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Humans and animals form cognitive maps that allow them to navigate through large-scale
environments. Despite decades of research on these maps, a central question remains
unclear: are these maps similar in nature across all environments, or are different kinds of
maps formed in different kinds of environments? To investigate this, we examined spatial
learning within three virtual environments: an open courtyard with patios connected by
paths (open maze), a set of rooms connected by corridors (closed maze), and a set of
isolated rooms connected only by teleporters (teleport maze). Importantly, all three
environments shared the same topological graph structure. Post-learning tests showed
that the environmental structure affected the accuracy, format, and variability of
participants’ spatial representations. The open maze was the most accurately
remembered, followed by the closed maze, and then the teleport maze. Both Euclidean and
graph-like spatial codes were formed in the open and closed mazes, but participants’
navigational trajectories were more biased by graph knowledge (connectivity between
rooms) in the closed maze compared to the open maze. Finally, performance in the open
maze and teleport maze were relatively homogenous across participants, whereas
performance in the closed maze exhibited greater individual variability. These results
indicate that the structure of the environment strongly shapes the nature of the spatial
representations that are formed within that environment, and that experimental findings
obtained in any single environment may not generalize to others with different structure.

Introduction

How does the mind represent large-scale, navigable spaces? Decades of research focusing on this
question have led to intense debate about the underlying nature of spatial knowledge, with some
researchers arguing that it takes the form of a Euclidean map (Gallistel, 1990; O’Keefe & Nadel, 1978) and
others arguing that it takes a more graph-like form (Kuipers, 1982; Warren, 2019). However, despite this
extensive previous work, a crucial factor is often ignored — variability of structure across the spaces being
represented. Most studies employ a single type of environment, such as an open arena, or a closed-in
maze, and different environmental types are rarely compared within the same study. Although the implicit
assumption is often made that findings obtained in one environment should generalize to all, this
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assumption has not been tested, and there are several reasons to believe that people may in fact form
different kinds of mental representations in different kinds of environments.

One line of evidence comes from electrophysiological studies in rodents. When animals navigate
in open arenas, hippocampal place cells typically fire in consistent locations irrespective of the direction
from which these locations are accessed, indicating a direction-invariant place code (Moser et al., 2008;
O’Keefe & Dostrovsky, 1971). In contrast, when animals navigate in linear corridors, place cell firing is
modulated by the direction of movement, indicating a direction-dependent representation (McNaughton et
al., 1983; Mehta et al., 1997; Muller et al., 1994). Another line of evidence comes from human cognitive
studies. People navigating in large open environments exhibit behaviors and neural patterns that are
consistent with the use of Euclidean cognitive maps (Chadwick et al., 2015; Doeller et al., 2010; Jacobs et
al., 2013; Maidenbaum et al., 2018; Shine et al., 2019), whereas people navigating in maze-like
environments exhibit behaviors and neural patterns that are consistent with the use of spatial
representations that do not obey Euclidean rules (Chrastil & Warren, 2014; Doner et al., 2022; Ericson &
Warren, 2020; He & Brown, 2019; Moeser, 1988; Muryy & Glennerster, 2018; Zetzsche et al., 2009). Taken
as a whole, these literatures suggest that the structure of the environment may matter: whereas some
environments might be more easily encoded using a Euclidean reference frame, others might be more
easily encoded using a cognitive graph consisting of place nodes and their connections (Peer et al., 2021).

If people do tend to form different representations in different environments, this tendency might
interact in interesting ways with individual differences in navigational ability. Previous work has shown that
people differ in their capacity to form spatial representations of large-scale spaces (Ishikawa & Montello,
2006; Weisberg & Newcombe, 2018). For example, one study found that people learning a virtual
environment could be separated into three groups: integrators, who could accurately point to locations in
separately-learned parts of the environment; non-integrators, who could only point to locations in the same
part of the environment but not across parts; and imprecise navigators, who could not point accurately to
any location (Weisberg et al., 2014). It is unclear how these groupings, obtained in an environment
consisting of bounded routes, would generalize to other types of environments such as large open spaces.
One possibility is that individual differences might manifest differently across environments with different
structure. Alternatively, these individual groupings might be stable character traits, perhaps shaped by the
environment that the participants grew up in (Barhorst-Cates et al., 2021; Coutrot et al., 2022).

Here we set out to test these ideas, by investigating how large-scale spatial knowledge (often
referred to as “cognitive maps”) differs across newly learned environments with different spatial structure.
Participants were randomly assigned to learn one of three virtual environments (Figure 1). The
environments all consisted of nine connected subspaces with the same topological graph structure, but
differed in terms of the cues available for determining location and heading in Euclidean space. In the first
environment (“open maze”), the subspaces were unwalled patios connected by walkways, contained within
a courtyard with distal landmarks. In the second environment (“closed maze”), the subspaces were
enclosed rooms connected by corridors. In the third environment (“teleport maze”), the subspaces were
enclosed rooms that were connected by “teleporters” located at the room centers. Following learning,
participants performed a series of behavioral tests designed to explore the structure of their spatial
representations (Figure S1). We hypothesized that the difference between the environments would affect
both the quality and the format of the resultant spatial codes. To anticipate, we found that the environmental
structure affected participants’ ability to learn the environment, the format of their mental representation
(Euclidean space or cognitive graph), and how these representations varied between participants.
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Figure 1: Experimental environments and procedure. A) Experimental environments. Participants
learned to navigate in a virtual environment containing nine rooms connected by pathways, each with an
associated floor color and object. In the open-maze condition (left), there were no walls and the entire
environment and its surrounding distal landmarks were visible. In the closed-maze condition (center), the
rooms and pathways were surrounded by walls so that only the immediate surroundings were visible, and
participants had to maintain an internal sense of direction and location to navigate. In the teleport maze
condition (right), rooms were physically isolated from each other, and participants relied on a system of
teleporters to transition between rooms; therefore, they could not maintain a consistent sense of direction
and could only learn the connectivity structure of the environment. Each environment is depicted from two
viewpoints: Room view, which shows a part of the environment from first person point of view, and Path
view, which shows a part of the environment from the corridor or teleport. B) Experimental procedure.
Following learning, participants’ memory of the environment was tested using a battery of spatial memory
tasks. All participants performed all tasks consecutively, except for the teleport maze condition participants
who did not do the Judgment of Relative Direction (JRD) task.



Results

The structure of the environment affects the accuracy of spatial knowledge

Each participant was familiarized with one of the three virtual environments through a multi-stage
training procedure. Participants first learned to navigate between the rooms (defined by their floor colors),
and then learned to navigate to objects located in “treasure chests” within each room. By the end of the
training, participants were able to navigate to all rooms and objects without error, even when the identifying
floor colors of the rooms were not shown, and the objects remained hidden in the treasure chests. In
addition, participants’ routes to the targets were significantly shorter than a random walk (p<0.01 for all
three environments), indicating that they formed a representation of the environmental structure instead of
walking randomly until they found their target.

Participants then performed a series of memory tasks to assess their spatial knowledge of the
environment they learned. Three tasks were designed to test Euclidean knowledge (Euclidean distance
estimation, map localization, and judgment of relative direction) and two were designed to test graph-based
knowledge (path distance estimation, shortest path selection). All tasks were administered to all
participants, with the exception the judgment of relative direction task (JRD), which was not administered
to participants in the teleporter maze because directions between rooms is not a knowable quantity in this
environment. In all three environments, performance in all tasks was better than chance (all ps<0.01; Figure
2A-E). However, we also observed consistent differences in performance between the environments:
accuracy was highest in the open maze condition, intermediate in the closed maze condition, and lowest in
the teleport maze condition. These differences between environments were confirmed for the Euclidean
distance estimation, map localization, path distance estimation, and shortest path selection tasks by
ANOVA (all Fs>18, all ps<0.0001; all p values FDR-corrected across tasks) and Tukey-Cramer post-hoc
tests of pairwise differences between environments (all ps<0.05, except for the difference between the
closed maze and teleport maze in the Euclidean and path distance estimation tasks: p=0.0504, 0.074,
respectively). The difference between environments was confirmed in the JRD task by t-test between open
and closed maze performance (1(37)=2.34, p=0.025). Notably, the same pattern of performance across
environments was observed for the three tasks that assessed Euclidean knowledge (Euclidean distance
estimation, map localization, JRD) and the two tasks that assessed graph-based knowledge (path distance
estimation, shortest path selection).

We also administered a free recall task on the object names. Previous work has shown that the
order of free recall can be shaped by the spatial proximity of objects, such that closer items are more likely
to be recalled in sequence (Hirtle & Jonides, 1985; Miller et al., 2013; Peer & Epstein, 2021). Consistent
with this prior work, the order of object recall was related to the both the Euclidean and path distance
between objects in the open maze (Euclidean distance between recalled objects vs. random recall
distances: 1(19)=3.84, p=0.003; Path distance: t(19)=3.68, p=0.005; all ps FDR-corrected across
environments) and closed maze (Euclidean distance: t(19)=2.68, p=0.02; path distance: t(19)=2.74,
p=0.02). In the teleport maze, recall order was related to path distance (1(19)=2.99, p=0.01) but there was
no relation between recall order and the Euclidean distance (t(19)=-0.16, p=0.87). The last finding is not
surprising given that participants did not learn anything about the “true” spatial positions of the rooms in the
teleport condition.

Taken together, these results demonstrate that participants can acquire information on the structure
of different environments, even if the environments only contain information about connectivity structure (in
the teleport maze condition). However, there is an ordering of spatial memory accuracy that relates to the
richness of the location and direction cues. Accuracy is highest in the open maze, where participants can
determine their location and heading directly through perception. Accuracy is intermediate in the closed
maze, where participants can use perception to determine their local (within-room) location and heading,
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but can only determine their global (across-rooms) location and heading by keeping track of these quantities
as they move from room to room. Accuracy is lowest in the teleport maze, where any inference about global
location and heading must be made indirectly, because there were no cues about heading or location as
the participants teleported from room to room. Thus, the structure of the environment affects the quality of
the spatial representations formed.

A Euclidean distance estimation B Map localization C Judgment of relative direction (JRD)
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Figure 2: Participants’ spatial memory varies across environments. A-E) Performance in spatial
memory tasks. In all environments and tasks, participants performed above chance level, indicating that
they acquired information on the environment’s spatial layout. However, spatial memory accuracy across
tasks was highest in the open maze condition, lower in the closed maze condition, and lowest in the teleport
maze condition, indicating that the gradual removal of location and direction cues impaired spatial memory
despite the similar layout and connectivity of all environments. F) Free recall of object names: objects’ recall
order was related to inter-object spatial distances in the open and closed maze conditions, but not in the
teleport maze condition. Grey dots represent individual participants’ data; Colored dots indicate group
means (green — open maze, red — closed maze, blue — teleport maze); error bars indicate standard error;
asterisks represent significant above-chance performance; full lines represent significant differences
between adjoining conditions; dashed lines represent chance level.



The structure of the environment affects the format of spatial knowledge

We next investigated whether the structure of the environment affects not just the accuracy of
learned spatial representations, but also their format. We were specifically interested in the distinction
between map-like and graph-like representations. Some researchers have argued that spatial knowledge
typically takes the form of a Euclidean map-like code (Gallistel, 1990; O’'Keefe & Nadel, 1978; Siegel &
White, 1975), while others have argued that it typically takes the form of a graph consisting of nodes and
edges (Kuipers, 1982; Warren, 2019). We previously suggested that Euclidean representations might be
more common in open environments, while graph-like representation might be more common in closed
environments (Peer et al., 2021). Here we tested this idea.

To do this, we first examined route preferences during learning, focusing on trials in the open and
closed mazes that had two possible routes toward the target, each with the same Euclidean path length but
a different number of intervening rooms (Figure 3A). We reasoned that if participants relied on a purely
Euclidean cognitive map, then Euclidean distance to goal should be the only consideration for route choice,
and both routes should be selected with equal probability. If, however, participants relied on a graph-like
representation, then they should prefer to take the path with fewer intervening rooms, because this involves
travelling over fewer graph edges. Moreover, if graph-like representations are more common in closed
environments, this bias would be stronger in the closed maze than in the open maze. Consistent with this
prediction, participants in the closed maze preferred routes passing through a smaller number of rooms
(p=0.001), while participants in the open-maze participants did not (p=0.17, FDR-corrected across
environments), and the difference between the mazes was significant (1(38)=2.11, p=0.04, two-samples
two-tailed t-test; Figure 3B).

Next we tested for analogous effects in the memory tasks. First, we looked at route preferences in
the shortest-path selection task. When asked to choose between two paths that had equal Euclidean length
but different numbers of path segments, both open- and closed-maze participants consistently selected
routes with fewer intervening rooms (both ps<0.0001, FDR-corrected for multiple comparisons), indicating
the use of a graph-like representation. However, in this case, the tendency to use graph knowledge did not
significantly differ between the two environments (1(38)=0.95, p=0.35, two-samples two-tailed t-test; Figure
3C). Second, we looked at distance estimates in the Euclidean distance estimation task. We reasoned that
if participants utilized a graph-like code instead of (or in addition to) a map-like code, then their responses
when estimating Euclidean distance should be affected by the path distance between the two items on each
trial, even though path distance is not what the task queries. In the open maze, correlation of Euclidean
distance estimates to the veridical Euclidean distances (mean r=0.72) was equivalent to correlation to the
veridical path distances (mean r=0.74, p=0.40 for the difference; Figure 3D). By contrast, in the closed
maze, correlation of Euclidean distance estimates to veridical Euclidean distances (mean r=0.42) was
significantly lower than correlation to path distance (r=0.46, p=0.005 for the difference; Figure 3D).
However, the difference between the Euclidean and path correlation was not significantly larger in the
closed maze compared to the open maze (p=0.59).

In sum, our results suggest that participants’ spatial knowledge is not restricted to a Euclidean map,
but includes graph-like elements. We also found some evidence that participants were more likely to use a
graph-like code in closed environments than in open environments. However, the evidence for this tendency
was mixed: it was observed when participants were actually navigating in the environment (in the learning
task), but it was not observed in the post-navigation memory tasks.
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Figure 3: Evidence for use of cognitive graph knowledge. A) A schematic of a sample trial, where there
were two pathways between the starting and target objects with equal path length but different number of
intervening rooms (graph length). If participants form a Euclidean cognitive map and use it to navigate, both
pathways should be selected with equal probability; but if participants form a cognitive-graph based
representation, they might choose the route with the lesser number of intervening rooms (shorter graph
length). B) Route selection during the learning task: participants were biased toward selection of the route
with the smaller number of intervening rooms in the closed maze condition but not in the open maze
condition. C) Route selection during the shortest path selection task: participants were biased toward
selection of the route with the smaller number of intervening rooms in both environments. D) In the
Euclidean distance estimation task, participants in the closed maze condition had a higher correlation
between their estimates and the path distances between locations than to the Euclidean distances between
locations, indicating a distortion of perceived Euclidean distances by cognitive graph knowledge. Plot
elements are the same as in Figure 2.

The structure of the environment affects how spatial knowledge varies across individuals

Finally we turned to an examination of how spatial knowledge varied across individual participants.
Previous work has examined individual differences in cognitive maps within a single environment (Ishikawa
& Montello, 2006; Weisberg & Newcombe, 2018), and we wanted to understand how this variability might
express itself across different types of environments. To investigate this issue, we focused first on the map
localization data, as this is the task that most directly assesses participants’ ability to form an accurate
cognitive map of the environment.

Inspection of the data (Fig 4A) revealed an interesting pattern of variability across the three mazes.
In the open maze, most participants were able to localize the objects and rooms with high accuracy, but
there were two participants who exhibited notably worse performance. In the teleport maze, the converse
pattern was observed: most participants were unable to localize the items accurately, but there were three
participants with notably better performance. This suggests that some teleport maze participants were able
to intuit an accurate cognitive map of the environment even in the absence any direct cues about the relative
locations of the rooms. Finally, participants in the closed maze showed a wide range of performance, with
some participants responding as accurately as the majority of the open maze participants, and some
responding as inaccurately as the majority of the teleport maze participants (Figure S2).

The overall picture suggests a division of participants into two groups: participants who can form
an accurate cognitive map, as evidenced by their ability to localize items accurately in the map test, and
those who cannot. This division was confirmed by a clustering analysis (clustering silhouette score = 0.91,
p<0.001). Following the terminology used in Weisberg & Newcombe (Weisberg & Newcombe, 2018), we



refer to these two groups as “integrators” (accurate localization) and “non-integrators” (inaccurate
localization). These groups were unequally distributed across the three mazes: in the open maze, most
participants were integrators; in the closed maze, about half of the participants were integrators and half
were non-integrators; in the teleport maze, most participants were non-integrators. The proportion of
integrators to non-integrators differed significantly between the mazes (p<0.01, Chi-square test). These
data suggest that a random participant’s propensity to behave as an integrator or non-integrator depends
on the structure of the environment.

We next examined the variability of individual performance in the other memory tasks. We were
particularly interested in whether the distinction between integrators and non-integrators, derived from map
localization performance, would be maintained in these tasks. For the statistical analyses, we divided the
participants into four groups: open maze integrators, closed maze integrators, closed maze non-integrators,
and teleport maze non-integrators. We did not analyze open maze non-integrators and teleport maze
integrators because there were only small numbers of participants in these groups.

Performance differed across participant groups in the Euclidean Distance Estimation Task
(F(3,54)=37.2, p<0.0001), the path distance estimation task (F(3,54)= 32.6, p<0.0001) and the shortest
path selection task (F(3,54)=41.8, p<0.0001; Fig. 4B-E). Post-hoc pairwise comparisons revealed an
interesting pattern that was common for all three tasks: performance of closed-maze integrators was
significantly better than the performance of closed-maze non-integrators (p<0.0001 in all tasks), but
performance did not significantly differ between open-maze integrators and closed-maze integrators
(p>0.91 in all tasks), nor did it significantly differ between closed maze non-integrators and teleport maze
non-integrators (p>0.55 in all tasks). In other words, integrators in the open and closed mazes performed
similarly, and non-integrators in the closed and teleport mazes performed similarly. A similar division
between integrators and non-integrators was observed in the JRD task. Performance in this task differed
across open maze integrators, closed maze integrators, and closed maze non-integrators (F(2,36)=23.12,
p<0.0001; Fig. 4C). Post-hoc pairwise comparison found that performance differed between closed-maze
integrators and closed maze non-integrators (p<0.0001), but not between open-maze integrators and
closed-maze integrators (p=0.86).

What drives the division of participants into integrators and non-integrators? Our findings suggest
that the environment itself is a primary factor: most participants in the open maze are integrators, whereas
most participants in the teleport maze are non-integrators. However, the control of the environment is not
absolute, and individual differences are observed in all three environments. We tested whether this
individual variability relates to participants’ baseline spatial abilities, by examining the correlation between
participants’ performance in each task and their perspective-taking ability (PTTA score) and self-rated
navigational ability (SBSOD score). To control for the difference between conditions, we analyzed data from
each maze separately (Table S1). Participants’ perspective taking ability was found to be correlated to their
map localization performance in the open maze environment condition (r=0.67,p<0.0001) and to their path
distance estimation, JRD performance and learning task accuracy in the closed maze condition
(r=0.55,0.57,0.54, p=0.043,0.043,0.043, respectively; FDR-corrected across tasks and environmental
conditions for SBSOD and PTTA separately). We did not observe any relationship between task
performance and SBSOD scores.

Overall, our results suggest that individual variability in environmental learning is related to
participants’ baseline perspective taking ability. In addition, this variability is not expressed the same way
across different environments; participants almost uniformly perform well in open environments, almost
uniformly perform poorly in cue-limited (teleport maze) environments, and the individual variability between
them becomes most pronounced in maze-like environments (which have limited visibility and require the
internal tracking of location and direction).
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Figure 4: Individual variability is manifested differently in different environments. (A) Dot plot of
map localization task performance, with clustering to two groups (“integrators” and “non-integrators”)
according to median performance. The proportion of integrators varies across environments (almost all
participants in the open maze, about half in the closed maze, and almost no participants in the teleport
maze), suggesting that the ability to integrate is not a stable personality trait but instead depends on the
environment being navigated. (B-E) Spatial memory task performance after dividing participants into
“integrators” and “non-integrators” (excluding the small groups of open maze non-integrators and teleport
maze integrators). Across tasks, performance among the closed maze integrators was similar to open maze
integrators, and performance among the closed maze non-integrators was similar to the teleport maze non-
integrators. The open maze and closed maze integrators consistently performed better than the teleport
maze and closed maze non-integrators. These results indicate that the environment plays a role in
participants’ ability to form an accurate cognitive map. Plot elements are the same as in Figure 2.

Discussion

The aim of this study was to understand how the physical structure of the navigable environment
affects the accuracy and format of cognitive maps. Our analyses yielded three main findings. First, the
accuracy of spatial knowledge was affected by the structure of the environment. Despite the fact that the
open maze, closed maze, and teleport maze all had the same number of rooms and the same connectivity
structure, spatial memory differed substantially between these conditions, with greater accuracy in
environments with greater number of orienting cues (open>closed>teleport). Second, the format of spatial
knowledge was also affected by the structure of the environment. Although we found evidence for both
map-like and graph-like representations, participants used graph-like codes to guide navigation more often
in the closed maze than in the open maze. Third, inter-individual variability in spatial knowledge was
affected by the structure of the environment. Variability was relatively low in the open maze, where most
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participants were classified as integrators, and it was also low in the teleport maze, where most participant
were classified as non-integrators. In contrast, variability was higher in the closed maze, where participants
fell about evenly into these two groups. Notably, however, there were good and bad performers in all
environments, suggesting that some individual differences may be impervious to environmental structure.
Taken together, these results emphasize the strong effect that environmental structure has on spatial
knowledge, and indicate that past and future studies of spatial representations should be carefully
interpreted with respect to the specific type of environment used in each study. Below we discuss each of
our main findings in more detail.

The first question we asked was whether the structure of the environment affects the accuracy of
spatial knowledge. We found strong evidence that it does. There was a consistent ordering of performance
across the environments: accuracy in all of our spatial memory tasks was highest for participants in the
open maze, intermediate for participants in the closed maze, and lowest for participants in the teleport
maze. This was despite the fact that all three environments had the exact same number of rooms, room
geometry, and connectivity structure.

What could be the cause of this ordering? By design, the three environments differed in the cues
available for determining heading and location in global Euclidean space. In the open maze, the entire
environment was always visible, including the boundary of the courtyard and the distal landmarks. Thus, it
was possible for participants to determine their global location and heading directly through perception. In
the closed maze, on the other hand, participants could not see beyond the walls that bounded the local
room or corridor. Thus, they could determine their local (within-room) location and heading through direct
perception, but their global position and heading could only be ascertained by using an active memory
process to keep track of these quantities as they moved from room to room. In the teleport maze, even this
active tracking process was not possible, because there were no distance cues when participants were
teleported from room to room, and their heading when placed in the new room was randomly chosen. Thus,
the key factor that likely accounts for the difference in performance across the three environments is the
ability of the participants to maintain a sense of global location and direction in Euclidean space during
learning. This conclusion is consistent with a large literature that suggests that the ability to path integrate—
to keep track of one’s position and heading during exploration—is crucial for building up a cognitive map
(Etienne & Jeffery, 2004; McNaughton et al., 1996, 2006).

The second question that we asked was whether the format of the environment affects the format
of the cognitive map. The question of format has been the subject of considerable ongoing debate. Some
theories posit that spatial knowledge consists of a map of locations represented within a global Euclidean
coordinate system (Gallistel, 1990; O’Keefe & Nadel, 1978; Siegel & White, 1975), while others theories
posit that it consists of a graph of routes connecting different locations, with no integration of the locations
into a single global reference frame (Kuipers, 1982; Meilinger, 2008; Warren, 2019). In a previous review,
we argued that map-like and graph-like representations might simultaneously exist in the same individuals
and be differentially employed in different environments (Peer et al., 2021). Our findings provide evidence
in support of these ideas.

Consideration of results across the three environments suggests that people formed both Euclidean
and graph-like representations. Supporting the use of Euclidean codes is the fact that participants were
able to perform tasks that were designed to tap Euclidean knowledge (map localization, Euclidean distance
estimation, JRD). Moreover—as discussed in the previous section—their ability to do so varied across
environments depending on the presence or absence of cues that allowed them to determine their global
Euclidean position and heading. Of particular note, the difference in performance between the open and
closed maze would not be found if only graph-like representations were formed, because such
representations only encode local spatial features (node identity, angle of links at a node) that are equally
present in both the open and closed maze (Ericson & Warren, 2020; Warren, 2019). However, we also
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found evidence for graph-like representations. Participants’ navigational choices during learning and their
responses in the shortest path task were influenced by graph knowledge: when faced with a decision
between two paths of equal Euclidean length in the open and closed mazes, they preferred the path with
fewer graph segments. Moreover, in the teleport maze, people were able to use pure graph knowledge
(connectivity between locations) to navigate, albeit with less accuracy, suggesting that spatial
representations can, in some circumstances, be predominantly graph-based. Thus, neither Euclidean maps
nor cognitive graphs can explain our results on their own; both are needed.

We initially hypothesized that the use of graph knowledge would differ across environments, and
we found some evidence in support of this hypothesis. When navigating through the environment in the
learning phase, participants’ preference to choose paths with fewer graph segments (when faced with
alternatives of equal length) was greater in the closed maze compared to the open maze. This preference
is consistent with our previous suggestion that the difficulty of integrating subspaces into a global Euclidean
representation in a closed environment might lead to greater reliance on environmental topology (Peer et
al., 2021). However, this effect was not observed when participants made route choices in the shortest path
selection task. Thus, the evidence that participants form representations that are more graph-like when
they are in closed environments is mixed.

The final question that we asked was how individual variability would manifest across the three
environments. Previous reports have demonstrated marked differences between people in their ability to
integrate subparts of the environment to form a global cognitive map (e.g. (Ishikawa & Montello, 2006;
Weisberg et al., 2014; Weisberg & Newcombe, 2018)). For example, in an environment consisting of
constrained routes, people can be separated into: integrators, who can accurately point to locations in
separately-learned parts of the environment; non-integrators, who can point to locations in the same part
of the environment but cannot point across parts; and imprecise navigators, who cannot accurately point to
any location (Ishikawa & Montello, 2006; Weisberg et al., 2014; Weisberg & Newcombe, 2018). These
differences have been shown to relate both to general cognitive abilities like mental rotation and perspective
taking (Weisberg et al., 2014), as well as to the type of environment people grew up in (e.g. the layout of
streets in people’s home town (Barhorst-Cates et al., 2021; Coutrot et al., 2022)). However, these studies
all used a single environment, leaving open the question of whether the observed individual differences are
stable character traits, or tendencies that might manifest differently in the same individual depending on
environmental context.

Here we found that there was a strong interaction between individuals’ cognitive mapping ability
and the structure of the environment: in the open maze most participants were integrators, in the teleport
maze most participants were non-integrators, and in the closed maze participants fell about equally into the
two groups. But there were some notable exceptions: some participants performed poorly in the open maze
despite the abundance of spatial cues, and some participants performed well in the teleport maze (even in
the Euclidean tasks), despite a paucity of cues. These results suggest that cognitive mapping ability
manifests differently across environments in most people, but there are some individuals on the top or
bottom end of the spectrum who show a greater degree of stability.

Previous studies of individual differences in cognitive mapping have used environments that
allowed continuous tracking of location and heading, but without full visibility to other parts of the
environment (Ishikawa & Montello, 2006; Weisberg & Newcombe, 2018). The variability observed in these
studies might be less robust in more open environments, or in graph-like environments like our teleport
maze. Furthermore, the ability to mentally track location and heading might depend on perspective taking
ability, which we found to be correlated to the individual differences in our task, in line with previous studies
(Allen et al., 1996; Fields & Shelton, 2006; Kozhevnikov et al., 2006; Schinazi et al., 2013). Overall, this set
of findings has two major implications: first, past (and future) studies of variability in navigational ability
should be carefully interpreted with respect to the specific environment being explored; and second, specific
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environmental features can reduce the variability between people and allow some “bad navigators” to
navigate efficiently and integrate between different environmental subparts, suggesting implications for
real-life environmental design.

Our study has several limitations. First, we used environments that differed from each other along
more than one feature (e.g. the open maze differed from the closed maze both in visibility across the
environment and in the existence of distal landmarks). Further studies might attempt to disentangle the
effect of each of these features on the resulting spatial representations, and test how the observed effects
generalize to other environments. Second, our study did not investigate within-subject effects — although
our individual difference analyses suggest that some individuals would perform differently in different
environments, we do not have direct evidence that this is the case. Third, the study population was
predominantly young adults (many of whom were university students), and participants were educated
members of western societies who are familiar with built urban environments (e.g. cities with rectilinear
streets, buildings with corridors and rooms). Further studies are needed to confirm the generality of the
findings for other age groups and population sectors, and for human populations whose primary experience
is with natural environments. Finally, some features of the environments (e.g. teleportation in the teleport
maze, and virtual desktop navigation) are not realistic; future studies may study how these effects are
manifested in real-life environments.

In conclusion, we found that specific features of each environment affect the accuracy and format
of the mental representations people form of these environments. We further found that individual variability
in cognitive map formation and use of graph knowledge are not constant but instead depend on the
environment being learned. These findings suggest that care should be taken to consider the specific
environment’s features when interpreting the spatial navigation literature, and that environments and
navigational aids can be designed to facilitate navigation even for people who would otherwise be bad
navigators.

Methods

Participants

Sixty healthy individuals were recruited for the experiment and randomly assigned in equal
numbers to three experimental conditions (open maze, closed maze, or teleport maze; 20 participants
each). Data from 5 participants were excluded before analysis: 3 because they failed to complete the spatial
learning task in the allotted time, 1 because they failed to complete the spatial learning task due to nausea,
and 1 because their data were lost due a technical error. Five individuals were recruited to replace these
participants and assigned to the corresponding conditions. Of the 60 participants whose data are reported,
39 identified as female, 21 identified as male, and 1 did not disclose their gender. Mean age was 24
(standard deviation 8.4). All participants provided written informed consent in compliance with procedures
approved by the University of Pennsylvania Institutional Review Board. One of the included participants did
not have data for the JRD and post-experiment questionnaire due to a technical error, and one did not have
data for the PTTA task.

Virtual environments

Three virtual environments (open maze, closed maze and teleport maze) were created using Unity
3D software. Each environment contained nine square (20x20 virtual meter) “rooms”. The rooms were
connected to each other, such that direct travel was possible between each room and two or three other
rooms. The nature of these connections differed between environments, as described below, but they
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always involved the same pairs of rooms so that the connectivity structure was the same across all three
environments (Figure 1A). Each room had a unique floor color (black, white, red, pink, yellow, orange,
green, blue, or purple), and contained a treasure chest mounted on a pedestal, with an object inside it (ruby,
globe, flashlight, book, key, burger, sword, rose, or bottle). Floor colors and objects were randomly assigned
to the different rooms for each participant. All objects and environmental elements were purchased from
Unity Asset Store.

In the open maze, the “rooms” were brick patios without walls. They were laid out on a grassy lawn
and were connected by stone pathways (also without walls). Travel was restricted to these pathways. Due
to the absence of walls, open visibility was maintained across the entire environment. The lawn was
bounded by a low fence that marked off a rectangular area of 130 x 100 virtual meters. Distal landmarks
were located beyond the four sides of the rectangle: a rocky mountain range, a storefront, a Ferris wheel
and a forest (Figure 1A).

In the closed maze, the rooms were enclosed spaces with bounding walls but no ceiling. They were
connected by passageways that also had bounding walls and were open to the sky. There were doors
between the rooms and the pathways, so that visibility was always limited to the current room or pathway.
There were no distal landmarks (Figure 1B).

In the teleport maze, the rooms were the same as in the closed maze. However, in this case, the
rooms had no visible exits. They were connected instead via a system of “teleporters” that were engaged
when the participants navigated to an upright 3 virtual meter tall white capsule in the center of each room.
Upon reaching the capsule, the names of two or three adjacent rooms, along with corresponding color
patches, would appear on the screen. A key press of “1”, “2”, or “3” initiated “teleportation” to the chosen
room. During teleportation, a black starry space image appeared on the screen for 2.5 seconds, after which
participants landed in a random corner of the target room, facing the center of the room. Thus, teleportation
moved participants from one room to another without allowing them to maintain a consistent sense of
direction. The connections between rooms through the teleporters were exactly the same inter-room
connections as in the open and closed maze environments. As in the closed maze environment, there were
no distal landmarks (Figure 1C).

Experimental Procedure Overview

At the beginning of the experiment, participants completed the Santa Barbara Sense of Direction
(SBSOD) scale and the Perspective Taking Task for Adults (PTTA). Participants assigned to the teleport
maze condition then completed a brief slideshow tutorial explaining the teleporter system functionality. All
participants then completed the environmental learning task, which was intended to teach them about the
spatial arrangement of the environment and the location of the objects within it. The knowledge that they
obtained was then assessed by a series of spatial memory tasks: Euclidean distance estimation, shortest
path selection, path distance estimation, free recall, map localization, and Judgment of Relative Direction
(JRD). Finally, participants filled out a post-experiment questionnaire (see Figure S1).

The experiment was performed in a single behavioral session, which was administered virtually
while being monitored by the experimenter through the Zoom video conferencing software. The session
lasted between 1.5-2 hours (mean = 79.6 minutes, SD = 23.2 minutes). Below we describe each
experimental task in detail. All tasks were programmed using Unity 3D software and were self-paced.



Santa Barbara Sense of Direction (SBSOD)

Participants completed the Santa Barbara Sense of Direction (SBSOD) scale, a 15 question self-
assessment of their navigational ability (Hegarty, 2002). On each trial, a phrase appeared on the screen,
and participants asked to rank how much this phrase describes them on a scale of 1 to 7.

Perspective Taking Task for Adults (PTTA)

Participants completed the Perspective Taking Task for Adults (PTTA), which is designed to
evaluate the ability to take a spatial perspective other than one’s own (Frick et al., 2014). On each ftrial,
participants viewed an image of a person taking a picture of 3 colored geometric shapes, and were
instructed to select one out of eight photos that accurately displays the view from the photographer’s
perspective. Before the task, participants viewed a brief tutorial slideshow to become familiar with the task.
Participants were instructed to complete as many trials as possible within 3 minutes.

Environmental learning task

During the environmental learning task, participants freely navigated the virtual environment, while
viewing it from a first-person, ground-level perspective. The task was divided into six stages. Stages 1-3
focused on learning the room locations; stages 4-6 focused on learning the object locations.

In each stage, participants were required to navigate to 9 navigational goals (rooms or objects) in
a random sequence. Each stage began with short instructions, after which the name and image of the first
navigational goal (room or object) was shown at the top of the screen. Participants were required to navigate
to the goal and press the spacebar key when they arrived at its location (inside the goal room, or next to
the treasure chest containing the goal object). If they pressed the button at the correct goal location, the
next navigational goal was displayed. If they pressed the button at an incorrect location, an error message
was displayed, and they had to continue searching until they reached the correct location, at which point
they moved on to the next trial. After all nine rooms or objects were found, participants were cued to search
again for any items they made errors on, and they only moved on to the next stage after they found all nine
goals in errorless trials. A counter at the top of the screen indicated how many rooms or objects had been
found successfully during the current stage. Participants were randomly placed in the center of one of nine
rooms at the start of stage 1, and started each subsequent stage from the ending position of the previous
stage.

In stages 1-3, participants searched for the rooms denoted by their floor colors. In stage 1, each
room’s floor color was made visible as soon as the participant was within the room boundaries. This meant
that they could always see the floor color of the room they were in, but could not see the floor colors of
distant rooms in the open maze, even though the rooms themselves were visible. In stage 2, each room’s
floor color was only visible once the participants indicated that they were at the goal room, forcing
participants to use their memory for the floor colors. Stage 3 was similar to stage 2, but all rooms had to be
found in errorless sequence in order to finish the task; if an error was made, the stage started over at the
beginning, with a new random sequence of trials. Throughout stages 1-3, each treasure chest was opened
as soon as participants entered its corresponding room, making the objects visible (even though they were
not yet relevant to the task).

In stages 4-6, participants searched for the objects. In stage 4, the treasure chest in each room
opened as soon at the participant entered the room, revealing the object within. In stage 5, objects remained
hidden inside the treasure chests until participants approached one of the chests and indicated that it was
the goal location, at which point the chest opened. Stage 6 was similar to stage 5, but participants were

6



required to find all objects in an errorless sequence, and had to repeat the whole stage from the beginning
if they made a mistake. Throughout stages 4-6, floor colors were made visible as soon as participants
entered each room.

The learning task was limited to 65 minutes; participants who exceeded this limit were not tested
further. The gradual learning, repetition of incorrectly remembered rooms and objects at the end of each
stage, and requirement for perfect color/object finding in stages 3 and 6 ensured that participants who
completed the learning task accurately encoded all of the room and object locations.

Euclidean distance estimation task

On each trial, the names of two objects were presented, one on the left and one on the right side
of the screen. Participants then typed in their estimate of the direct-line (Euclidean) distance between the
two objects, in feet. All possible pairs of objects were used, resulting in 36 trials.

Shortest path selection task

On each trial, participants saw the name of a starting room (indicated by floor color) and the name
of a target object. Below these on the screen, they saw the names and color patches corresponding to the
rooms (two or three) that were connected to the starting room. Their instructions were to choose the
connecting room that would take them from the starting room to the target object using the shortest possible
path. All possible room-object combinations were queried, with the exception of combinations for which
target objects were in rooms adjacent to the starting room and combinations for which there was no correct
answer because all selections had a similar shortest path distance. With these exclusions, there were 36
trials.

Path distance estimation task

On each trial, participants viewed the names of two objects presented on the left and right side of
the screen. They were instructed to type their estimate of the time (in seconds) it would take them to travel
between the two objects. All possible pairs of objects were used, resulting in 36 trials.

Free recall task

Participants were asked to type the names of the objects in the maze in any order, pressing the
“return” button after each name to move on to the next line. They then pressed the “finish” button when they
had recalled as many objects as possible. Entered object names remained visible along with a counter
indicating the number of entered objects.

Map localization task

On each trial, participants were presented with the name and picture of an object on the screen, or
the name and picture of a floor color corresponding to one of the rooms, along with an empty rectangle
proportional to the environment size. They were instructed to click the cursor within the rectangle to indicate
the location of the indicated item, at which point a red dot appeared in the clicked location; participants
could click again to reselect the location as many times as they wanted before finalizing their answer by
clicking a “continue” button. Each room and object (18 total) was queried, in random order.



Judgment of Relative Direction (JRD) task

On each trial, participants saw the names of two floor colors (corresponding to two rooms) and one
object. They were instructed to imagine that they were standing in the first room (starting room), looking
toward the second room (facing room). They were then asked to indicate the direction of the object (target
object) by rotating an arrow on the screen from 0 to 360 degrees. Each possible starting-facing room
combination was queried, for a total of 72 trials. Target objects were never in the starting or facing rooms,
and each target object was used an equal number of times. Only participants in the open and closed maze
environments completed the JRD task.

QUANTIFICATION AND STATISTICAL ANALYSIS
Santa Barbara Sense of Direction (SBSOD)

Participants' self-ratings in the SBSOD questionnaire were averaged across questions (taking into
account questions that are reverse scored). Scores across participants were then correlated to individual
performance in each spatial memory task.

Perspective Taking Task for Adults (PTTA)

Scores corresponded to the number of trials answered correctly within the time limit, out of a
maximum of 32. Scores across participants were then correlated to performance in each spatial memory
task.

Environmental learning task

We calculated a measure of navigational efficiency for each participant in the following manner.
First we calculated, for each trial, the length of the path that the participant took from the starting location
(i.e. the location of the room/object that was the goal on the previous trial) to the goal location. In the open
and closed mazes, the actual path length between the room centers was used (i.e. virtual meters); for the
teleport maze condition, the path length was taken to mean the number of rooms through which the
participant passed (since all inter-room transitions were of similar length in this condition), and 1 was
subtracted from this number (since the floor color of the target room, or the room containing the target
object, was always visible upon reaching the teleporter in the room preceding the target). Then, for each
trial, chance level performance was calculated by generating 1000 random walks between the starting and
goal location and averaging the path lengths of these random walks. The true path length was then divided
by the average chance path length to obtain a path efficiency ratio. These ratios were compared to 1 (the
null hypothesis of no difference between chance and actual performance) using a one-sample one-tailed t-
test across participants in each condition, with FDR-correction across conditions. Stages 1 and 4 were not
included in this calculation because paths in these stages were implemented prior to learning room and
object locations.

To test for possible use of cognitive graph knowledge, we examined trials for which there were two
pathways of equal length but different number of intervening rooms between the starting and target
locations. We calculated the proportion of these trials on which participants chose the route with the lower
compared to the higher number of intervening rooms. This value was compared to the null hypothesis of
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no route preference (0.5) using a one-sample two-tailed t-test in each environmental condition, with FDR-
correction across conditions. These values were computed for the open and closed maze conditions. They
were not calculated in the teleport maze, because path length and number of intervening rooms were
identical quantities in this condition.

Euclidean distance estimation task

Task accuracy was computed for each participant by taking the correlation between the estimated
distance on each trial and the veridical Euclidean distance. Accuracy was compared to chance for each
environment by using a one-sample one-tailed t-test against a zero baseline, FDR-corrected across the
three environments. Differences between conditions were tested using a one-way ANOVA with Tukey-
Cramer post-hoc tests.

Use of cognitive graph knowledge was evaluated in the following manner. For each participant, we
calculated the correlation between the estimated distances across trials and the shortest path length. We
compared this value to the correlation between estimated distances and Euclidean distances (i.e. task
accuracy) using a paired-samples two-tailed t-test. We reasoned that participants who used graph-
knowledge to estimate distances would show greater correlation with path distance than with Euclidean
distance. This analysis was not performed for participants in the teleport maze, because these participants
only had direct knowledge about the number of intervening rooms, not path length or Euclidean distance.

Shortest path selection task

We calculated the percentage of correct responses for each participant. In the open and closed
mazes, correct responses were based on the path length. In the teleport maze, correct responses were
based on the number of rooms connecting the starting and target objects. Chance performance was
estimated for each maze by making 1000 random answer selections for each question (average chance
level accuracy - 0.49 for the open and closed maze conditions, 0.45 for the teleport maze condition).
Accuracy was compared to chance using a one-sample one-tailed t-test across participants, with FDR-
correction across conditions. Differences between conditions were tested using a one-way ANOVA with
Tukey-Cramer post-hoc tests.

To test for use of cognitive graph knowledge, we examined trials in the open and closed mazes for
which there were two pathways of equal length but different number of intervening rooms between the
starting and target rooms. We calculated the fraction of these trials on which participants chose the route
with the lower compared to the higher number of intervening rooms. This value was compared to the null
hypothesis of no route preference (0.5) using a one-sample two-tailed t-test, with FDR-correction across
mazes.

Path distance estimation task

Task accuracy was computed for each participant by taking the correlation between the estimated
distance on each trial and the veridical shortest path distance between objects (for the open and closed
maze conditions’ participants) or the veridical minimal number of rooms connecting the starting and target
objects (for the teleport maze condition participants, since inter-room transitions did not differ in length in
this condition). Above-chance performance in each environmental condition was measured using a one-
sample one-tailed t-test across participants in each condition against a zero baseline, with FDR-correction
across conditions. Differences between conditions were tested using a one-way ANOVA with Tukey-
Cramer post-hoc tests.



Free recall task

The relation between recall order and objects’ spatial distance was measured by calculating the
distance between each pair of consecutively-recalled objects, averaging these values for each participant,
and comparing these values to chance-level distances (estimated using 1000 random permutations of
object names) using a one-sample one-tailed t-test across participants in each condition, with FDR-
correction across conditions. Differences between conditions were tested using a one-way ANOVA with
Tukey-Cramer post-hoc tests.

Map localization task

Task accuracy was assessed by taking each participant’s localization responses and using a
gradient descent algorithm to translate, scale, and rotate these responses by multiples of 90 degrees until
they best fit the true configuration. Accuracy was then determined by measuring the average distance
between each object’'s marked location and its true location. These values were compared to chance-level
performance (estimated using the same process for 1000 random localizations of 9 items), using a one-
sample one-tailed t-test across participants in each condition, with FDR-correction across conditions.
Differences between conditions were tested using a one-way ANOVA with Tukey-Cramer post-hoc tests.

Judgment of Relative Direction (JRD) task

Task accuracy was computed as the mean angular distance between participants’ responses and
the veridical object directions. These values were compared to chance-level performance (90 degrees
average deviation) using a one-sample one-tailed t-test across participants in each condition, with FDR-
correction across conditions. The difference between the open and closed maze conditions was tested
using a two-sample two-tailed t-test.

Individual variability analysis

To investigate individual variability in environmental learning, we used the map localization task
results to assign participants to groups, because this task provides the most direct test of participants’
knowledge of environmental layout. We first divided the 60 participants into two groups based on the
median value (1.29) of their performance on map localization task. To ensure that these groups reflected
two distinct clusters, the silhouette value of the grouping was computed, and this value was compared to
the silhouette value of randomly-generated data in the same value range that were divided to two groups
using the median, repeated 1000 times. The silhouette of the original grouping was higher than all random
data grouping, indicating separation between groups at p<0.001. Further validating this grouping, K-means
clustering (K=2) of the data led to identical assignment of participants into two clusters. The two groups of
participants (30 participants in each) were subsequently named “integrators” and “non-Integrators”
(following Weisberg & Newcombe 2018). Within the integrators group, 18 participants were in the open
maze, 9 participants were in the closed maze, and 3 participants in the teleport maze. Within the non-
Integrators group, 2 participants were in the open maze, 11 participants were in the closed maze, and 17
participants were in the teleport maze. To assess the difference in distribution of integrators and non-
integrators between the groups, we used a Chi-square test.

To investigate the effect of individual variability on task performance, we analyzed the accuracy of
integrators and non-integrators in the Euclidean distance estimation task, shortest path selection task, path
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distance estimation task, and JRD, in each environment separately. Since there were few non-integrators
in the open maze or integrators in the teleport maze, these two groups (open maze non-integrators and
teleport maze integrators) were omitted from the analyses. Differences between the remaining four
participant groups (open maze integrators, closed maze integrators, closed maze non-integrators and
teleport maze non-integrators) were tested for each task using a one-way ANOVA with Tukey-Cramer post-
hoc tests. The resulting p-values were FDR-corrected across tasks.
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Supplementary Materials

A. Euclidean distance estimation

What is the distance in feet
between these two objects?

Flashlight Ruby

E. Map localization

Locate this place or object on the empty map:

-

B. Shortest path selection

You are standing in the black room.

If you need to take the shortest path to
the flashlight, which color room would you
travel to next?

,,"ﬁ_, i
- : ==y Continue (after pressing on map)
QOrange White Purple
Press ‘1’ Press 2' Press '3’

C. Path distance estimation

How much time in seconds F. Free recall

would it take to travel along the path
between these two objects?

Flashlight Ruby

Enter text... H o/9 ” Finish |

D. Judgment of Relative Direction (JRD)

You are standing in the center of the red
room, looking at the blue room.

What is the direction of the flashlight?

?

Figure S1: Spatial memory tasks. A-D) Euclidean distance estimation, shortest path selection, path
distance estimation, and judgment of relative direction (JRD) tasks. Left — Example trial screen for each
task; Right — Schematic depicting the choice the participant needs to make in an example trial. E-F) Map
localization and Free recall tasks: Example trial screens.




Map localization — example participants’ performance

Open maze Closed maze Teleport maze
Integrator Integrator Integrator
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Figure S2: Map localization example performance. Left — the original configuration of rooms in the
environment. Right — example configurations rooms in the map localization task, from six example
participants (three integrators and three non-integrators, from the three experimental environments; each
rectangle represents one participant’s performance). Each colored dot represents a participant’s
localization of the correspondingly colored room on a blank map of the environment. The localization of the
nine objects task is not presented here.



Correlation of individual SBSOD score to task performance

Learning Euclidean Path distance Shortest path Map JRD
distance estimation selection localization
estimation
Open 0.08 0.14 0.25 0.08 0.11 0.18
maze
Closed 0.56 0.34 0.40 0.46 0.44 0.30
maze
Teleport 0.21 0.10 0.33 0.52 0.37
maze
Correlation of individual PTTA score to task performance
Learning Euclidean Path distance | Shortest path Map JRD
distance estimation selection localization
estimation
Open 0.18 0.25 0.20 0.12 0.67 0.52
maze
Closed 0.54 0.45 0.55 0.35 0.46 0.57
maze
Teleport 0.18 0.49 0.33 0.51 0.38
maze

Table S1: Correlation of SBSOD and PTTA scores to task performance.
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