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Humans and animals form cognitive maps that allow them to navigate through large-scale 
environments. Despite decades of research on these maps, a central question remains 
unclear: are these maps similar in nature across all environments, or are different kinds of 
maps formed in different kinds of environments? To investigate this, we examined spatial 
learning within three virtual environments: an open courtyard with patios connected by 
paths (open maze), a set of rooms connected by corridors (closed maze), and a set of 
isolated rooms connected only by teleporters (teleport maze). Importantly, all three 
environments shared the same topological graph structure. Post-learning tests showed 
that the environmental structure affected the accuracy, format, and variability of 
participants’ spatial representations. The open maze was the most accurately 
remembered, followed by the closed maze, and then the teleport maze. Both Euclidean and 
graph-like spatial codes were formed in the open and closed mazes, but participants’ 
navigational trajectories were more biased by graph knowledge (connectivity between 
rooms) in the closed maze compared to the open maze. Finally, performance in the open 
maze and teleport maze were relatively homogenous across participants, whereas 
performance in the closed maze exhibited greater individual variability. These results 
indicate that the structure of the environment strongly shapes the nature of the spatial 
representations that are formed within that environment, and that experimental findings 
obtained in any single environment may not generalize to others with different structure. 

 

Introduction 
How does the mind represent large-scale, navigable spaces? Decades of research focusing on this 

question have led to intense debate about the underlying nature of spatial knowledge, with some 
researchers arguing that it takes the form of a Euclidean map (Gallistel, 1990; O’Keefe & Nadel, 1978) and 
others arguing that it takes a more graph-like form (Kuipers, 1982; Warren, 2019). However, despite this 
extensive previous work, a crucial factor is often ignored – variability of structure across the spaces being 
represented. Most studies employ a single type of environment, such as an open arena, or a closed-in 
maze, and different environmental types are rarely compared within the same study. Although the implicit 
assumption is often made that findings obtained in one environment should generalize to all, this 
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assumption has not been tested, and there are several reasons to believe that people may in fact form 
different kinds of mental representations in different kinds of environments. 

One line of evidence comes from electrophysiological studies in rodents. When animals navigate 
in open arenas, hippocampal place cells typically fire in consistent locations irrespective of the direction 
from which these locations are accessed, indicating a direction-invariant place code (Moser et al., 2008; 
O’Keefe & Dostrovsky, 1971). In contrast, when animals navigate in linear corridors, place cell firing is 
modulated by the direction of movement, indicating a direction-dependent representation (McNaughton et 
al., 1983; Mehta et al., 1997; Muller et al., 1994). Another line of evidence comes from human cognitive 
studies. People navigating in large open environments exhibit behaviors and neural patterns that are 
consistent with the use of Euclidean cognitive maps (Chadwick et al., 2015; Doeller et al., 2010; Jacobs et 
al., 2013; Maidenbaum et al., 2018; Shine et al., 2019), whereas people navigating in maze-like 
environments exhibit behaviors and neural patterns that are consistent with the use of spatial 
representations that do not obey Euclidean rules (Chrastil & Warren, 2014; Doner et al., 2022; Ericson & 
Warren, 2020; He & Brown, 2019; Moeser, 1988; Muryy & Glennerster, 2018; Zetzsche et al., 2009). Taken 
as a whole, these literatures suggest that the structure of the environment may matter: whereas some 
environments might be more easily encoded using a Euclidean reference frame, others might be more 
easily encoded using a cognitive graph consisting of place nodes and their connections (Peer et al., 2021). 

If people do tend to form different representations in different environments, this tendency might 
interact in interesting ways with individual differences in navigational ability. Previous work has shown that 
people differ in their capacity to form spatial representations of large-scale spaces (Ishikawa & Montello, 
2006; Weisberg & Newcombe, 2018). For example, one study found that people learning a virtual 
environment could be separated into three groups: integrators, who could accurately point to locations in 
separately-learned parts of the environment; non-integrators, who could only point to locations in the same 
part of the environment but not across parts; and imprecise navigators, who could not point accurately to 
any location (Weisberg et al., 2014). It is unclear how these groupings, obtained in an environment 
consisting of bounded routes, would generalize to other types of environments such as large open spaces. 
One possibility is that individual differences might manifest differently across environments with different 
structure. Alternatively, these individual groupings might be stable character traits, perhaps shaped by the 
environment that the participants grew up in (Barhorst-Cates et al., 2021; Coutrot et al., 2022). 

Here we set out to test these ideas, by investigating how large-scale spatial knowledge (often 
referred to as “cognitive maps”) differs across newly learned environments with different spatial structure. 
Participants were randomly assigned to learn one of three virtual environments (Figure 1). The 
environments all consisted of nine connected subspaces with the same topological graph structure, but 
differed in terms of the cues available for determining location and heading in Euclidean space. In the first 
environment (“open maze”), the subspaces were unwalled patios connected by walkways, contained within 
a courtyard with distal landmarks. In the second environment (“closed maze”), the subspaces were 
enclosed rooms connected by corridors. In the third environment (“teleport maze”), the subspaces were 
enclosed rooms that were connected by “teleporters” located at the room centers. Following learning, 
participants performed a series of behavioral tests designed to explore the structure of their spatial 
representations (Figure S1). We hypothesized that the difference between the environments would affect 
both the quality and the format of the resultant spatial codes. To anticipate, we found that the environmental 
structure affected participants’ ability to learn the environment, the format of their mental representation 
(Euclidean space or cognitive graph), and how these representations varied between participants.  
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Figure 1: Experimental environments and procedure. A) Experimental environments. Participants 
learned to navigate in a virtual environment containing nine rooms connected by pathways, each with an 
associated floor color and object. In the open-maze condition (left), there were no walls and the entire 
environment and its surrounding distal landmarks were visible. In the closed-maze condition (center), the 
rooms and pathways were surrounded by walls so that only the immediate surroundings were visible, and 
participants had to maintain an internal sense of direction and location to navigate. In the teleport maze 
condition (right), rooms were physically isolated from each other, and participants relied on a system of 
teleporters to transition between rooms; therefore, they could not maintain a consistent sense of direction 
and could only learn the connectivity structure of the environment. Each environment is depicted from two 
viewpoints: Room view, which shows a part of the environment from first person point of view, and Path 
view, which shows a part of the environment from the corridor or teleport. B) Experimental procedure. 
Following learning, participants’ memory of the environment was tested using a battery of spatial memory 
tasks. All participants performed all tasks consecutively, except for the teleport maze condition participants 
who did not do the Judgment of Relative Direction (JRD) task. 
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Results 
The structure of the environment affects the accuracy of spatial knowledge 

Each participant was familiarized with one of the three virtual environments through a multi-stage 
training procedure. Participants first learned to navigate between the rooms (defined by their floor colors), 
and then learned to navigate to objects located in “treasure chests” within each room. By the end of the 
training, participants were able to navigate to all rooms and objects without error, even when the identifying 
floor colors of the rooms were not shown, and the objects remained hidden in the treasure chests. In 
addition, participants’ routes to the targets were significantly shorter than a random walk (p<0.01 for all 
three environments), indicating that they formed a representation of the environmental structure instead of 
walking randomly until they found their target. 

Participants then performed a series of memory tasks to assess their spatial knowledge of the 
environment they learned. Three tasks were designed to test Euclidean knowledge (Euclidean distance 
estimation, map localization, and judgment of relative direction) and two were designed to test graph-based 
knowledge (path distance estimation, shortest path selection). All tasks were administered to all 
participants, with the exception the judgment of relative direction task (JRD), which was not administered 
to participants in the teleporter maze because directions between rooms is not a knowable quantity in this 
environment. In all three environments, performance in all tasks was better than chance (all ps<0.01; Figure 
2A-E). However, we also observed consistent differences in performance between the environments: 
accuracy was highest in the open maze condition, intermediate in the closed maze condition, and lowest in 
the teleport maze condition. These differences between environments were confirmed for the Euclidean 
distance estimation, map localization, path distance estimation, and shortest path selection tasks by 
ANOVA (all Fs>18, all ps<0.0001; all p values FDR-corrected across tasks) and Tukey-Cramer post-hoc 
tests of pairwise differences between environments (all ps<0.05, except for the difference between the 
closed maze and teleport maze in the Euclidean and path distance estimation tasks: p=0.0504, 0.074, 
respectively). The difference between environments was confirmed in the JRD task by t-test between open 
and closed maze performance (t(37)=2.34, p=0.025). Notably, the same pattern of performance across 
environments was observed for the three tasks that assessed Euclidean knowledge (Euclidean distance 
estimation, map localization, JRD) and the two tasks that assessed graph-based knowledge (path distance 
estimation, shortest path selection). 

We also administered a free recall task on the object names. Previous work has shown that the 
order of free recall can be shaped by the spatial proximity of objects, such that closer items are more likely 
to be recalled in sequence (Hirtle & Jonides, 1985; Miller et al., 2013; Peer & Epstein, 2021). Consistent 
with this prior work, the order of object recall was related to the both the Euclidean and path distance 
between objects in the open maze (Euclidean distance between recalled objects vs. random recall 
distances: t(19)=3.84, p=0.003; Path distance: t(19)=3.68, p=0.005; all ps FDR-corrected across 
environments) and closed maze (Euclidean distance: t(19)=2.68, p=0.02; path distance: t(19)=2.74, 
p=0.02). In the teleport maze, recall order was related to path distance (t(19)=2.99, p=0.01) but there was 
no relation between recall order and the Euclidean distance (t(19)=-0.16, p=0.87). The last finding is not 
surprising given that participants did not learn anything about the “true” spatial positions of the rooms in the 
teleport condition.  

Taken together, these results demonstrate that participants can acquire information on the structure 
of different environments, even if the environments only contain information about connectivity structure (in 
the teleport maze condition). However, there is an ordering of spatial memory accuracy that relates to the 
richness of the location and direction cues. Accuracy is highest in the open maze, where participants can 
determine their location and heading directly through perception. Accuracy is intermediate in the closed 
maze, where participants can use perception to determine their local (within-room) location and heading, 
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but can only determine their global (across-rooms) location and heading by keeping track of these quantities 
as they move from room to room. Accuracy is lowest in the teleport maze, where any inference about global 
location and heading must be made indirectly, because there were no cues about heading or location as 
the participants teleported from room to room. Thus, the structure of the environment affects the quality of 
the spatial representations formed. 

 

 
Figure 2: Participants’ spatial memory varies across environments. A-E) Performance in spatial 
memory tasks. In all environments and tasks, participants performed above chance level, indicating that 
they acquired information on the environment’s spatial layout. However, spatial memory accuracy across 
tasks was highest in the open maze condition, lower in the closed maze condition, and lowest in the teleport 
maze condition, indicating that the gradual removal of location and direction cues impaired spatial memory 
despite the similar layout and connectivity of all environments. F) Free recall of object names: objects’ recall 
order was related to inter-object spatial distances in the open and closed maze conditions, but not in the 
teleport maze condition. Grey dots represent individual participants’ data; Colored dots indicate group 
means (green – open maze, red – closed maze, blue – teleport maze); error bars indicate standard error; 
asterisks represent significant above-chance performance; full lines represent significant differences 
between adjoining conditions; dashed lines represent chance level. 
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The structure of the environment affects the format of spatial knowledge 
We next investigated whether the structure of the environment affects not just the accuracy of 

learned spatial representations, but also their format. We were specifically interested in the distinction 
between map-like and graph-like representations. Some researchers have argued that spatial knowledge 
typically takes the form of a Euclidean map-like code (Gallistel, 1990; O’Keefe & Nadel, 1978; Siegel & 
White, 1975), while others have argued that it typically takes the form of a graph consisting of nodes and 
edges (Kuipers, 1982; Warren, 2019). We previously suggested that Euclidean representations might be 
more common in open environments, while graph-like representation might be more common in closed 
environments (Peer et al., 2021). Here we tested this idea. 

To do this, we first examined route preferences during learning, focusing on trials in the open and 
closed mazes that had two possible routes toward the target, each with the same Euclidean path length but 
a different number of intervening rooms (Figure 3A). We reasoned that if participants relied on a purely 
Euclidean cognitive map, then Euclidean distance to goal should be the only consideration for route choice, 
and both routes should be selected with equal probability. If, however, participants relied on a graph-like 
representation, then they should prefer to take the path with fewer intervening rooms, because this involves 
travelling over fewer graph edges. Moreover, if graph-like representations are more common in closed 
environments, this bias would be stronger in the closed maze than in the open maze. Consistent with this 
prediction, participants in the closed maze preferred routes passing through a smaller number of rooms 
(p=0.001), while participants in the open-maze participants did not (p=0.17, FDR-corrected across 
environments), and the difference between the mazes was significant (t(38)=2.11, p=0.04, two-samples 
two-tailed t-test; Figure 3B).  

Next we tested for analogous effects in the memory tasks. First, we looked at route preferences in 
the shortest-path selection task. When asked to choose between two paths that had equal Euclidean length 
but different numbers of path segments, both open- and closed-maze participants consistently selected 
routes with fewer intervening rooms (both ps<0.0001, FDR-corrected for multiple comparisons), indicating 
the use of a graph-like representation. However, in this case, the tendency to use graph knowledge did not 
significantly differ between the two environments (t(38)=0.95, p=0.35, two-samples two-tailed t-test; Figure 
3C). Second, we looked at distance estimates in the Euclidean distance estimation task. We reasoned that 
if participants utilized a graph-like code instead of (or in addition to) a map-like code, then their responses 
when estimating Euclidean distance should be affected by the path distance between the two items on each 
trial, even though path distance is not what the task queries. In the open maze, correlation of Euclidean 
distance estimates to the veridical Euclidean distances (mean r=0.72) was equivalent to correlation to the 
veridical path distances (mean r=0.74, p=0.40 for the difference; Figure 3D). By contrast, in the closed 
maze, correlation of Euclidean distance estimates to veridical Euclidean distances (mean r=0.42) was 
significantly lower than correlation to path distance (r=0.46, p=0.005 for the difference; Figure 3D). 
However, the difference between the Euclidean and path correlation was not significantly larger in the 
closed maze compared to the open maze (p=0.59).  

In sum, our results suggest that participants’ spatial knowledge is not restricted to a Euclidean map, 
but includes graph-like elements. We also found some evidence that participants were more likely to use a 
graph-like code in closed environments than in open environments. However, the evidence for this tendency 
was mixed: it was observed when participants were actually navigating in the environment (in the learning 
task), but it was not observed in the post-navigation memory tasks. 
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Figure 3: Evidence for use of cognitive graph knowledge. A) A schematic of a sample trial, where there 
were two pathways between the starting and target objects with equal path length but different number of 
intervening rooms (graph length). If participants form a Euclidean cognitive map and use it to navigate, both 
pathways should be selected with equal probability; but if participants form a cognitive-graph based 
representation, they might choose the route with the lesser number of intervening rooms (shorter graph 
length). B) Route selection during the learning task: participants were biased toward selection of the route 
with the smaller number of intervening rooms in the closed maze condition but not in the open maze 
condition. C) Route selection during the shortest path selection task: participants were biased toward 
selection of the route with the smaller number of intervening rooms in both environments. D) In the 
Euclidean distance estimation task, participants in the closed maze condition had a higher correlation 
between their estimates and the path distances between locations than to the Euclidean distances between 
locations, indicating a distortion of perceived Euclidean distances by cognitive graph knowledge. Plot 
elements are the same as in Figure 2. 

 
The structure of the environment affects how spatial knowledge varies across individuals 

Finally we turned to an examination of how spatial knowledge varied across individual participants. 
Previous work has examined individual differences in cognitive maps within a single environment (Ishikawa 
& Montello, 2006; Weisberg & Newcombe, 2018), and we wanted to understand how this variability might 
express itself across different types of environments. To investigate this issue, we focused first on the map 
localization data, as this is the task that most directly assesses participants’ ability to form an accurate 
cognitive map of the environment.  

Inspection of the data (Fig 4A) revealed an interesting pattern of variability across the three mazes. 
In the open maze, most participants were able to localize the objects and rooms with high accuracy, but 
there were two participants who exhibited notably worse performance. In the teleport maze, the converse 
pattern was observed: most participants were unable to localize the items accurately, but there were three 
participants with notably better performance. This suggests that some teleport maze participants were able 
to intuit an accurate cognitive map of the environment even in the absence any direct cues about the relative 
locations of the rooms. Finally, participants in the closed maze showed a wide range of performance, with 
some participants responding as accurately as the majority of the open maze participants, and some 
responding as inaccurately as the majority of the teleport maze participants (Figure S2). 

The overall picture suggests a division of participants into two groups: participants who can form 
an accurate cognitive map, as evidenced by their ability to localize items accurately in the map test, and 
those who cannot. This division was confirmed by a clustering analysis (clustering silhouette score = 0.91, 
p<0.001). Following the terminology used in Weisberg & Newcombe (Weisberg & Newcombe, 2018), we 
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refer to these two groups as “integrators” (accurate localization) and “non-integrators” (inaccurate 
localization). These groups were unequally distributed across the three mazes: in the open maze, most 
participants were integrators; in the closed maze, about half of the participants were integrators and half 
were non-integrators; in the teleport maze, most participants were non-integrators. The proportion of 
integrators to non-integrators differed significantly between the mazes (p<0.01, Chi-square test). These 
data suggest that a random participant’s propensity to behave as an integrator or non-integrator depends 
on the structure of the environment. 

We next examined the variability of individual performance in the other memory tasks. We were 
particularly interested in whether the distinction between integrators and non-integrators, derived from map 
localization performance, would be maintained in these tasks. For the statistical analyses, we divided the 
participants into four groups: open maze integrators, closed maze integrators, closed maze non-integrators, 
and teleport maze non-integrators. We did not analyze open maze non-integrators and teleport maze 
integrators because there were only small numbers of participants in these groups. 

Performance differed across participant groups in the Euclidean Distance Estimation Task 
(F(3,54)=37.2, p<0.0001), the path distance estimation task (F(3,54)= 32.6, p<0.0001) and the shortest 
path selection task (F(3,54)=41.8, p<0.0001; Fig. 4B-E). Post-hoc pairwise comparisons revealed an 
interesting pattern that was common for all three tasks: performance of closed-maze integrators was 
significantly better than the performance of closed-maze non-integrators (p<0.0001 in all tasks), but 
performance did not significantly differ between open-maze integrators and closed-maze integrators 
(p>0.91 in all tasks), nor did it significantly differ between closed maze non-integrators and teleport maze 
non-integrators (p>0.55 in all tasks). In other words, integrators in the open and closed mazes performed 
similarly, and non-integrators in the closed and teleport mazes performed similarly. A similar division 
between integrators and non-integrators was observed in the JRD task. Performance in this task differed 
across open maze integrators, closed maze integrators, and closed maze non-integrators (F(2,36)=23.12, 
p<0.0001; Fig. 4C). Post-hoc pairwise comparison found that performance differed between closed-maze 
integrators and closed maze non-integrators (p<0.0001), but not between open-maze integrators and 
closed-maze integrators (p=0.86). 

What drives the division of participants into integrators and non-integrators? Our findings suggest 
that the environment itself is a primary factor: most participants in the open maze are integrators, whereas 
most participants in the teleport maze are non-integrators. However, the control of the environment is not 
absolute, and individual differences are observed in all three environments. We tested whether this 
individual variability relates to participants’ baseline spatial abilities, by examining the correlation between 
participants’ performance in each task and their perspective-taking ability (PTTA score) and self-rated 
navigational ability (SBSOD score). To control for the difference between conditions, we analyzed data from 
each maze separately (Table S1). Participants’ perspective taking ability was found to be correlated to their 
map localization performance in the open maze environment condition (r=0.67,p<0.0001) and to their path 
distance estimation, JRD performance and learning task accuracy in the closed maze condition 
(r=0.55,0.57,0.54, p=0.043,0.043,0.043, respectively; FDR-corrected across tasks and environmental 
conditions for SBSOD and PTTA separately). We did not observe any relationship between task 
performance and SBSOD scores. 

Overall, our results suggest that individual variability in environmental learning is related to 
participants’ baseline perspective taking ability. In addition, this variability is not expressed the same way 
across different environments; participants almost uniformly perform well in open environments, almost 
uniformly perform poorly in cue-limited (teleport maze) environments, and the individual variability between 
them becomes most pronounced in maze-like environments (which have limited visibility and require the 
internal tracking of location and direction). 
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     Figure 4: Individual variability is manifested differently in different environments. (A) Dot plot of 
map localization task performance, with clustering to two groups (“integrators” and “non-integrators”) 
according to median performance. The proportion of integrators varies across environments (almost all 
participants in the open maze, about half in the closed maze, and almost no participants in the teleport 
maze), suggesting that the ability to integrate is not a stable personality trait but instead depends on the 
environment being navigated. (B-E) Spatial memory task performance after dividing participants into 
“integrators” and “non-integrators” (excluding the small groups of open maze non-integrators and teleport 
maze integrators). Across tasks, performance among the closed maze integrators was similar to open maze 
integrators, and performance among the closed maze non-integrators was similar to the teleport maze non-
integrators. The open maze and closed maze integrators consistently performed better than the teleport 
maze and closed maze non-integrators. These results indicate that the environment plays a role in 
participants’ ability to form an accurate cognitive map. Plot elements are the same as in Figure 2. 

 

Discussion 
The aim of this study was to understand how the physical structure of the navigable environment 

affects the accuracy and format of cognitive maps. Our analyses yielded three main findings. First, the 
accuracy of spatial knowledge was affected by the structure of the environment. Despite the fact that the 
open maze, closed maze, and teleport maze all had the same number of rooms and the same connectivity 
structure, spatial memory differed substantially between these conditions, with greater accuracy in 
environments with greater number of orienting cues (open>closed>teleport). Second, the format of spatial 
knowledge was also affected by the structure of the environment. Although we found evidence for both 
map-like and graph-like representations, participants used graph-like codes to guide navigation more often 
in the closed maze than in the open maze. Third, inter-individual variability in spatial knowledge was 
affected by the structure of the environment. Variability was relatively low in the open maze, where most 
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participants were classified as integrators, and it was also low in the teleport maze, where most participant 
were classified as non-integrators. In contrast, variability was higher in the closed maze, where participants 
fell about evenly into these two groups. Notably, however, there were good and bad performers in all 
environments, suggesting that some individual differences may be impervious to environmental structure. 
Taken together, these results emphasize the strong effect that environmental structure has on spatial 
knowledge, and indicate that past and future studies of spatial representations should be carefully 
interpreted with respect to the specific type of environment used in each study. Below we discuss each of 
our main findings in more detail. 

The first question we asked was whether the structure of the environment affects the accuracy of 
spatial knowledge. We found strong evidence that it does. There was a consistent ordering of performance 
across the environments: accuracy in all of our spatial memory tasks was highest for participants in the 
open maze, intermediate for participants in the closed maze, and lowest for participants in the teleport 
maze. This was despite the fact that all three environments had the exact same number of rooms, room 
geometry, and connectivity structure.  

What could be the cause of this ordering? By design, the three environments differed in the cues 
available for determining heading and location in global Euclidean space. In the open maze, the entire 
environment was always visible, including the boundary of the courtyard and the distal landmarks. Thus, it 
was possible for participants to determine their global location and heading directly through perception. In 
the closed maze, on the other hand, participants could not see beyond the walls that bounded the local 
room or corridor. Thus, they could determine their local (within-room) location and heading through direct 
perception, but their global position and heading could only be ascertained by using an active memory 
process to keep track of these quantities as they moved from room to room. In the teleport maze, even this 
active tracking process was not possible, because there were no distance cues when participants were 
teleported from room to room, and their heading when placed in the new room was randomly chosen. Thus, 
the key factor that likely accounts for the difference in performance across the three environments is the 
ability of the participants to maintain a sense of global location and direction in Euclidean space during 
learning. This conclusion is consistent with a large literature that suggests that the ability to path integrate—
to keep track of one’s position and heading during exploration—is crucial for building up a cognitive map 
(Etienne & Jeffery, 2004; McNaughton et al., 1996, 2006).  

 The second question that we asked was whether the format of the environment affects the format 
of the cognitive map. The question of format has been the subject of considerable ongoing debate. Some 
theories posit that spatial knowledge consists of a map of locations represented within a global Euclidean 
coordinate system (Gallistel, 1990; O’Keefe & Nadel, 1978; Siegel & White, 1975), while others theories 
posit that it consists of a graph of routes connecting different locations, with no integration of the locations 
into a single global reference frame (Kuipers, 1982; Meilinger, 2008; Warren, 2019). In a previous review, 
we argued that map-like and graph-like representations might simultaneously exist in the same individuals 
and be differentially employed in different environments (Peer et al., 2021). Our findings provide evidence 
in support of these ideas. 

Consideration of results across the three environments suggests that people formed both Euclidean 
and graph-like representations. Supporting the use of Euclidean codes is the fact that participants were 
able to perform tasks that were designed to tap Euclidean knowledge (map localization, Euclidean distance 
estimation, JRD). Moreover—as discussed in the previous section—their ability to do so varied across 
environments depending on the presence or absence of cues that allowed them to determine their global 
Euclidean position and heading. Of particular note, the difference in performance between the open and 
closed maze would not be found if only graph-like representations were formed, because such 
representations only encode local spatial features (node identity, angle of links at a node) that are equally 
present in both the open and closed maze (Ericson & Warren, 2020; Warren, 2019). However, we also 
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found evidence for graph-like representations. Participants’ navigational choices during learning and their 
responses in the shortest path task were influenced by graph knowledge: when faced with a decision 
between two paths of equal Euclidean length in the open and closed mazes, they preferred the path with 
fewer graph segments. Moreover, in the teleport maze, people were able to use pure graph knowledge 
(connectivity between locations) to navigate, albeit with less accuracy, suggesting that spatial 
representations can, in some circumstances, be predominantly graph-based. Thus, neither Euclidean maps 
nor cognitive graphs can explain our results on their own; both are needed. 

We initially hypothesized that the use of graph knowledge would differ across environments, and 
we found some evidence in support of this hypothesis. When navigating through the environment in the 
learning phase, participants’ preference to choose paths with fewer graph segments (when faced with 
alternatives of equal length) was greater in the closed maze compared to the open maze. This preference 
is consistent with our previous suggestion that the difficulty of integrating subspaces into a global Euclidean 
representation in a closed environment might lead to greater reliance on environmental topology (Peer et 
al., 2021). However, this effect was not observed when participants made route choices in the shortest path 
selection task. Thus, the evidence that participants form representations that are more graph-like when 
they are in closed environments is mixed. 

The final question that we asked was how individual variability would manifest across the three 
environments. Previous reports have demonstrated marked differences between people in their ability to 
integrate subparts of the environment to form a global cognitive map (e.g. (Ishikawa & Montello, 2006; 
Weisberg et al., 2014; Weisberg & Newcombe, 2018)). For example, in an environment consisting of 
constrained routes, people can be separated into: integrators, who can accurately point to locations in 
separately-learned parts of the environment; non-integrators, who can point to locations in the same part 
of the environment but cannot point across parts; and imprecise navigators, who cannot accurately point to 
any location (Ishikawa & Montello, 2006; Weisberg et al., 2014; Weisberg & Newcombe, 2018). These 
differences have been shown to relate both to general cognitive abilities like mental rotation and perspective 
taking (Weisberg et al., 2014), as well as to the type of environment people grew up in (e.g. the layout of 
streets in people’s home town (Barhorst-Cates et al., 2021; Coutrot et al., 2022)). However, these studies 
all used a single environment, leaving open the question of whether the observed individual differences are 
stable character traits, or tendencies that might manifest differently in the same individual depending on 
environmental context. 

Here we found that there was a strong interaction between individuals’ cognitive mapping ability 
and the structure of the environment: in the open maze most participants were integrators, in the teleport 
maze most participants were non-integrators, and in the closed maze participants fell about equally into the 
two groups. But there were some notable exceptions: some participants performed poorly in the open maze 
despite the abundance of spatial cues, and some participants performed well in the teleport maze (even in 
the Euclidean tasks), despite a paucity of cues. These results suggest that cognitive mapping ability 
manifests differently across environments in most people, but there are some individuals on the top or 
bottom end of the spectrum who show a greater degree of stability. 

Previous studies of individual differences in cognitive mapping have used environments that 
allowed continuous tracking of location and heading, but without full visibility to other parts of the 
environment (Ishikawa & Montello, 2006; Weisberg & Newcombe, 2018). The variability observed in these 
studies might be less robust in more open environments, or in graph-like environments like our teleport 
maze. Furthermore, the ability to mentally track location and heading might depend on perspective taking 
ability, which we found to be correlated to the individual differences in our task, in line with previous studies 
(Allen et al., 1996; Fields & Shelton, 2006; Kozhevnikov et al., 2006; Schinazi et al., 2013). Overall, this set 
of findings has two major implications: first, past (and future) studies of variability in navigational ability 
should be carefully interpreted with respect to the specific environment being explored; and second, specific 
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environmental features can reduce the variability between people and allow some “bad navigators” to 
navigate efficiently and integrate between different environmental subparts, suggesting implications for 
real-life environmental design. 

 Our study has several limitations. First, we used environments that differed from each other along 
more than one feature (e.g. the open maze differed from the closed maze both in visibility across the 
environment and in the existence of distal landmarks). Further studies might attempt to disentangle the 
effect of each of these features on the resulting spatial representations, and test how the observed effects 
generalize to other environments. Second, our study did not investigate within-subject effects – although 
our individual difference analyses suggest that some individuals would perform differently in different 
environments, we do not have direct evidence that this is the case. Third, the study population was 
predominantly young adults (many of whom were university students), and participants were educated 
members of western societies who are familiar with built urban environments (e.g. cities with rectilinear 
streets, buildings with corridors and rooms). Further studies are needed to confirm the generality of the 
findings for other age groups and population sectors, and for human populations whose primary experience 
is with natural environments. Finally, some features of the environments (e.g. teleportation in the teleport 
maze, and virtual desktop navigation) are not realistic; future studies may study how these effects are 
manifested in real-life environments. 

 In conclusion, we found that specific features of each environment affect the accuracy and format 
of the mental representations people form of these environments. We further found that individual variability 
in cognitive map formation and use of graph knowledge are not constant but instead depend on the 
environment being learned. These findings suggest that care should be taken to consider the specific 
environment’s features when interpreting the spatial navigation literature, and that environments and 
navigational aids can be designed to facilitate navigation even for people who would otherwise be bad 
navigators.  

 

Methods 
Participants 

Sixty healthy individuals were recruited for the experiment and randomly assigned in equal 
numbers to three experimental conditions (open maze, closed maze, or teleport maze; 20 participants 
each). Data from 5 participants were excluded before analysis: 3 because they failed to complete the spatial 
learning task in the allotted time, 1 because they failed to complete the spatial learning task due to nausea, 
and 1 because their data were lost due a technical error. Five individuals were recruited to replace these 
participants and assigned to the corresponding conditions. Of the 60 participants whose data are reported, 
39 identified as female, 21 identified as male, and 1 did not disclose their gender. Mean age was 24 
(standard deviation 8.4). All participants provided written informed consent in compliance with procedures 
approved by the University of Pennsylvania Institutional Review Board. One of the included participants did 
not have data for the JRD and post-experiment questionnaire due to a technical error, and one did not have 
data for the PTTA task.  

 

Virtual environments 

Three virtual environments (open maze, closed maze and teleport maze) were created using Unity 
3D software. Each environment contained nine square (20x20 virtual meter) “rooms”. The rooms were 
connected to each other, such that direct travel was possible between each room and two or three other 
rooms. The nature of these connections differed between environments, as described below, but they 
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always involved the same pairs of rooms so that the connectivity structure was the same across all three 
environments (Figure 1A). Each room had a unique floor color (black, white, red, pink, yellow, orange, 
green, blue, or purple), and contained a treasure chest mounted on a pedestal, with an object inside it (ruby, 
globe, flashlight, book, key, burger, sword, rose, or bottle). Floor colors and objects were randomly assigned 
to the different rooms for each participant. All objects and environmental elements were purchased from 
Unity Asset Store. 

In the open maze, the “rooms” were brick patios without walls. They were laid out on a grassy lawn 
and were connected by stone pathways (also without walls). Travel was restricted to these pathways. Due 
to the absence of walls, open visibility was maintained across the entire environment. The lawn was 
bounded by a low fence that marked off a rectangular area of 130 x 100 virtual meters. Distal landmarks 
were located beyond the four sides of the rectangle: a rocky mountain range, a storefront, a Ferris wheel 
and a forest (Figure 1A). 

In the closed maze, the rooms were enclosed spaces with bounding walls but no ceiling. They were 
connected by passageways that also had bounding walls and were open to the sky. There were doors 
between the rooms and the pathways, so that visibility was always limited to the current room or pathway. 
There were no distal landmarks (Figure 1B). 

In the teleport maze, the rooms were the same as in the closed maze. However, in this case, the 
rooms had no visible exits. They were connected instead via a system of “teleporters” that were engaged 
when the participants navigated to an upright 3 virtual meter tall white capsule in the center of each room. 
Upon reaching the capsule, the names of two or three adjacent rooms, along with corresponding color 
patches, would appear on the screen. A key press of “1”, “2”, or “3” initiated “teleportation” to the chosen 
room. During teleportation, a black starry space image appeared on the screen for 2.5 seconds, after which 
participants landed in a random corner of the target room, facing the center of the room. Thus, teleportation 
moved participants from one room to another without allowing them to maintain a consistent sense of 
direction. The connections between rooms through the teleporters were exactly the same inter-room 
connections as in the open and closed maze environments. As in the closed maze environment, there were 
no distal landmarks (Figure 1C). 

 

Experimental Procedure Overview 

At the beginning of the experiment, participants completed the Santa Barbara Sense of Direction 
(SBSOD) scale and the Perspective Taking Task for Adults (PTTA). Participants assigned to the teleport 
maze condition then completed a brief slideshow tutorial explaining the teleporter system functionality. All 
participants then completed the environmental learning task, which was intended to teach them about the 
spatial arrangement of the environment and the location of the objects within it. The knowledge that they 
obtained was then assessed by a series of spatial memory tasks: Euclidean distance estimation, shortest 
path selection, path distance estimation, free recall, map localization, and Judgment of Relative Direction 
(JRD). Finally, participants filled out a post-experiment questionnaire (see Figure S1).  

The experiment was performed in a single behavioral session, which was administered virtually 
while being monitored by the experimenter through the Zoom video conferencing software. The session 
lasted between 1.5-2 hours (mean = 79.6 minutes, SD = 23.2 minutes). Below we describe each 
experimental task in detail. All tasks were programmed using Unity 3D software and were self-paced. 
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Santa Barbara Sense of Direction (SBSOD) 

Participants completed the Santa Barbara Sense of Direction (SBSOD) scale, a 15 question self-
assessment of their navigational ability (Hegarty, 2002). On each trial, a phrase appeared on the screen, 
and participants asked to rank how much this phrase describes them on a scale of 1 to 7. 

 

Perspective Taking Task for Adults (PTTA) 

Participants completed the Perspective Taking Task for Adults (PTTA), which is designed to 
evaluate the ability to take a spatial perspective other than one’s own (Frick et al., 2014). On each trial, 
participants viewed an image of a person taking a picture of 3 colored geometric shapes, and were 
instructed to select one out of eight photos that accurately displays the view from the photographer’s 
perspective. Before the task, participants viewed a brief tutorial slideshow to become familiar with the task. 
Participants were instructed to complete as many trials as possible within 3 minutes. 

 

Environmental learning task 

During the environmental learning task, participants freely navigated the virtual environment, while 
viewing it from a first-person, ground-level perspective. The task was divided into six stages. Stages 1-3 
focused on learning the room locations; stages 4-6 focused on learning the object locations.  

In each stage, participants were required to navigate to 9 navigational goals (rooms or objects) in 
a random sequence. Each stage began with short instructions, after which the name and image of the first 
navigational goal (room or object) was shown at the top of the screen. Participants were required to navigate 
to the goal and press the spacebar key when they arrived at its location (inside the goal room, or next to 
the treasure chest containing the goal object). If they pressed the button at the correct goal location, the 
next navigational goal was displayed. If they pressed the button at an incorrect location, an error message 
was displayed, and they had to continue searching until they reached the correct location, at which point 
they moved on to the next trial. After all nine rooms or objects were found, participants were cued to search 
again for any items they made errors on, and they only moved on to the next stage after they found all nine 
goals in errorless trials. A counter at the top of the screen indicated how many rooms or objects had been 
found successfully during the current stage. Participants were randomly placed in the center of one of nine 
rooms at the start of stage 1, and started each subsequent stage from the ending position of the previous 
stage. 

In stages 1-3, participants searched for the rooms denoted by their floor colors. In stage 1, each 
room’s floor color was made visible as soon as the participant was within the room boundaries. This meant 
that they could always see the floor color of the room they were in, but could not see the floor colors of 
distant rooms in the open maze, even though the rooms themselves were visible. In stage 2, each room’s 
floor color was only visible once the participants indicated that they were at the goal room, forcing 
participants to use their memory for the floor colors. Stage 3 was similar to stage 2, but all rooms had to be 
found in errorless sequence in order to finish the task; if an error was made, the stage started over at the 
beginning, with a new random sequence of trials. Throughout stages 1-3, each treasure chest was opened 
as soon as participants entered its corresponding room, making the objects visible (even though they were 
not yet relevant to the task).  

In stages 4-6, participants searched for the objects. In stage 4, the treasure chest in each room 
opened as soon at the participant entered the room, revealing the object within. In stage 5, objects remained 
hidden inside the treasure chests until participants approached one of the chests and indicated that it was 
the goal location, at which point the chest opened. Stage 6 was similar to stage 5, but participants were 
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required to find all objects in an errorless sequence, and had to repeat the whole stage from the beginning 
if they made a mistake. Throughout stages 4-6, floor colors were made visible as soon as participants 
entered each room. 

The learning task was limited to 65 minutes; participants who exceeded this limit were not tested 
further. The gradual learning, repetition of incorrectly remembered rooms and objects at the end of each 
stage, and requirement for perfect color/object finding in stages 3 and 6 ensured that participants who 
completed the learning task accurately encoded all of the room and object locations. 

 

Euclidean distance estimation task 

On each trial, the names of two objects were presented, one on the left and one on the right side 
of the screen. Participants then typed in their estimate of the direct-line (Euclidean) distance between the 
two objects, in feet. All possible pairs of objects were used, resulting in 36 trials.  

 

Shortest path selection task 

On each trial, participants saw the name of a starting room (indicated by floor color) and the name 
of a target object. Below these on the screen, they saw the names and color patches corresponding to the 
rooms (two or three) that were connected to the starting room. Their instructions were to choose the 
connecting room that would take them from the starting room to the target object using the shortest possible 
path. All possible room-object combinations were queried, with the exception of combinations for which 
target objects were in rooms adjacent to the starting room and combinations for which there was no correct 
answer because all selections had a similar shortest path distance. With these exclusions, there were 36 
trials. 

 

Path distance estimation task 

On each trial, participants viewed the names of two objects presented on the left and right side of 
the screen. They were instructed to type their estimate of the time (in seconds) it would take them to travel 
between the two objects. All possible pairs of objects were used, resulting in 36 trials. 

 

Free recall task 

Participants were asked to type the names of the objects in the maze in any order, pressing the 
“return” button after each name to move on to the next line. They then pressed the “finish” button when they 
had recalled as many objects as possible. Entered object names remained visible along with a counter 
indicating the number of entered objects. 

 

Map localization task 

On each trial, participants were presented with the name and picture of an object on the screen, or 
the name and picture of a floor color corresponding to one of the rooms, along with an empty rectangle 
proportional to the environment size. They were instructed to click the cursor within the rectangle to indicate 
the location of the indicated item, at which point a red dot appeared in the clicked location; participants 
could click again to reselect the location as many times as they wanted before finalizing their answer by 
clicking a “continue” button. Each room and object (18 total) was queried, in random order.  
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Judgment of Relative Direction (JRD) task 

On each trial, participants saw the names of two floor colors (corresponding to two rooms) and one 
object. They were instructed to imagine that they were standing in the first room (starting room), looking 
toward the second room (facing room). They were then asked to indicate the direction of the object (target 
object) by rotating an arrow on the screen from 0 to 360 degrees. Each possible starting-facing room 
combination was queried, for a total of 72 trials. Target objects were never in the starting or facing rooms, 
and each target object was used an equal number of times. Only participants in the open and closed maze 
environments completed the JRD task. 

 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Santa Barbara Sense of Direction (SBSOD) 

Participants' self-ratings in the SBSOD questionnaire were averaged across questions (taking into 
account questions that are reverse scored). Scores across participants were then correlated to individual 
performance in each spatial memory task. 

 

Perspective Taking Task for Adults (PTTA) 

Scores corresponded to the number of trials answered correctly within the time limit, out of a 
maximum of 32. Scores across participants were then correlated to performance in each spatial memory 
task. 

 

Environmental learning task 

We calculated a measure of navigational efficiency for each participant in the following manner. 
First we calculated, for each trial, the length of the path that the participant took from the starting location 
(i.e. the location of the room/object that was the goal on the previous trial) to the goal location. In the open 
and closed mazes, the actual path length between the room centers was used (i.e. virtual meters); for the 
teleport maze condition, the path length was taken to mean the number of rooms through which the 
participant passed (since all inter-room transitions were of similar length in this condition), and 1 was 
subtracted from this number (since the floor color of the target room, or the room containing the target 
object, was always visible upon reaching the teleporter in the room preceding the target). Then, for each 
trial, chance level performance was calculated by generating 1000 random walks between the starting and 
goal location and averaging the path lengths of these random walks. The true path length was then divided 
by the average chance path length to obtain a path efficiency ratio. These ratios were compared to 1 (the 
null hypothesis of no difference between chance and actual performance) using a one-sample one-tailed t-
test across participants in each condition, with FDR-correction across conditions. Stages 1 and 4 were not 
included in this calculation because paths in these stages were implemented prior to learning room and 
object locations.  

To test for possible use of cognitive graph knowledge, we examined trials for which there were two 
pathways of equal length but different number of intervening rooms between the starting and target 
locations. We calculated the proportion of these trials on which participants chose the route with the lower 
compared to the higher number of intervening rooms. This value was compared to the null hypothesis of 
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no route preference (0.5) using a one-sample two-tailed t-test in each environmental condition, with FDR-
correction across conditions. These values were computed for the open and closed maze conditions. They 
were not calculated in the teleport maze, because path length and number of intervening rooms were 
identical quantities in this condition. 

 

Euclidean distance estimation task 

Task accuracy was computed for each participant by taking the correlation between the estimated 
distance on each trial and the veridical Euclidean distance. Accuracy was compared to chance for each 
environment by using a one-sample one-tailed t-test against a zero baseline, FDR-corrected across the 
three environments. Differences between conditions were tested using a one-way ANOVA with Tukey-
Cramer post-hoc tests.  

Use of cognitive graph knowledge was evaluated in the following manner. For each participant, we 
calculated the correlation between the estimated distances across trials and the shortest path length. We 
compared this value to the correlation between estimated distances and Euclidean distances (i.e. task 
accuracy) using a paired-samples two-tailed t-test. We reasoned that participants who used graph-
knowledge to estimate distances would show greater correlation with path distance than with Euclidean 
distance. This analysis was not performed for participants in the teleport maze, because these participants 
only had direct knowledge about the number of intervening rooms, not path length or Euclidean distance. 

 

Shortest path selection task 

We calculated the percentage of correct responses for each participant. In the open and closed 
mazes, correct responses were based on the path length. In the teleport maze, correct responses were 
based on the number of rooms connecting the starting and target objects. Chance performance was 
estimated for each maze by making 1000 random answer selections for each question (average chance 
level accuracy - 0.49 for the open and closed maze conditions, 0.45 for the teleport maze condition). 
Accuracy was compared to chance using a one-sample one-tailed t-test across participants, with FDR-
correction across conditions. Differences between conditions were tested using a one-way ANOVA with 
Tukey-Cramer post-hoc tests.  

To test for use of cognitive graph knowledge, we examined trials in the open and closed mazes for 
which there were two pathways of equal length but different number of intervening rooms between the 
starting and target rooms. We calculated the fraction of these trials on which participants chose the route 
with the lower compared to the higher number of intervening rooms. This value was compared to the null 
hypothesis of no route preference (0.5) using a one-sample two-tailed t-test, with FDR-correction across 
mazes.  

 

Path distance estimation task 

Task accuracy was computed for each participant by taking the correlation between the estimated 
distance on each trial and the veridical shortest path distance between objects (for the open and closed 
maze conditions’ participants) or the veridical minimal number of rooms connecting the starting and target 
objects (for the teleport maze condition participants, since inter-room transitions did not differ in length in 
this condition). Above-chance performance in each environmental condition was measured using a one-
sample one-tailed t-test across participants in each condition against a zero baseline, with FDR-correction 
across conditions. Differences between conditions were tested using a one-way ANOVA with Tukey-
Cramer post-hoc tests. 
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Free recall task 

The relation between recall order and objects’ spatial distance was measured by calculating the 
distance between each pair of consecutively-recalled objects, averaging these values for each participant, 
and comparing these values to chance-level distances (estimated using 1000 random permutations of 
object names) using a one-sample one-tailed t-test across participants in each condition, with FDR-
correction across conditions. Differences between conditions were tested using a one-way ANOVA with 
Tukey-Cramer post-hoc tests. 

 

Map localization task 

Task accuracy was assessed by taking each participant’s localization responses and using a 
gradient descent algorithm to translate, scale, and rotate these responses by multiples of 90 degrees until 
they best fit the true configuration. Accuracy was then determined by measuring the average distance 
between each object’s marked location and its true location. These values were compared to chance-level 
performance (estimated using the same process for 1000 random localizations of 9 items), using a one-
sample one-tailed t-test across participants in each condition, with FDR-correction across conditions. 
Differences between conditions were tested using a one-way ANOVA with Tukey-Cramer post-hoc tests. 

 

Judgment of Relative Direction (JRD) task 

Task accuracy was computed as the mean angular distance between participants’ responses and 
the veridical object directions. These values were compared to chance-level performance (90 degrees 
average deviation) using a one-sample one-tailed t-test across participants in each condition, with FDR-
correction across conditions. The difference between the open and closed maze conditions was tested 
using a two-sample two-tailed t-test. 

 

Individual variability analysis 

To investigate individual variability in environmental learning, we used the map localization task 
results to assign participants to groups, because this task provides the most direct test of participants’ 
knowledge of environmental layout. We first divided the 60 participants into two groups based on the 
median value (1.29) of their performance on map localization task. To ensure that these groups reflected 
two distinct clusters, the silhouette value of the grouping was computed, and this value was compared to 
the silhouette value of randomly-generated data in the same value range that were divided to two groups 
using the median, repeated 1000 times. The silhouette of the original grouping was higher than all random 
data grouping, indicating separation between groups at p<0.001. Further validating this grouping, K-means 
clustering (K=2) of the data led to identical assignment of participants into two clusters. The two groups of 
participants (30 participants in each) were subsequently named “integrators” and “non-Integrators” 
(following Weisberg & Newcombe 2018). Within the integrators group, 18 participants were in the open 
maze, 9 participants were in the closed maze, and 3 participants in the teleport maze. Within the non-
Integrators group, 2 participants were in the open maze, 11 participants were in the closed maze, and 17 
participants were in the teleport maze. To assess the difference in distribution of integrators and non-
integrators between the groups, we used a Chi-square test. 

To investigate the effect of individual variability on task performance, we analyzed the accuracy of 
integrators and non-integrators in the Euclidean distance estimation task, shortest path selection task, path 
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distance estimation task, and JRD, in each environment separately. Since there were few non-integrators 
in the open maze or integrators in the teleport maze, these two groups (open maze non-integrators and 
teleport maze integrators) were omitted from the analyses. Differences between the remaining four 
participant groups (open maze integrators, closed maze integrators, closed maze non-integrators and 
teleport maze non-integrators) were tested for each task using a one-way ANOVA with Tukey-Cramer post-
hoc tests. The resulting p-values were FDR-corrected across tasks.  

 

DATA AVAILABILITY 

Data and analysis codes for this project are publicly available at: 
https://osf.io/adcfk/?view_only=28a03c1cd2314bd6995a7c5ca2e69180. 

 

 

Acknowledgments 
M.P. is supported by the Fulbright and Zuckerman STEM Leadership fellowships. This research 

was supported by NIH grants R01EY022350 and R01EY031286 to R.A.E. We thank Alexander Miller and 
the UPenn VR lab for providing tools for Unity data logging. 

 

Author contributions 
M.P., C.N. and R.A.E – conceptualization, data curation, formal analysis, investigation, 

methodology, validation, visualization, writing (original draft, review and editing). M.P. and C.N. – software. 
R.A.E – funding acquisition, project administration and supervision. 

 

 

References 
Allen, G. L., Kirasic, K. C., Dobson, S. H., Long, R. G., & Beck, S. (1996). Predicting environmental 

learning from spatial abilities: An indirect route. Intelligence, 22(3), 327–355. 
https://doi.org/10.1016/S0160-2896(96)90026-4 

Barhorst-Cates, E. M., Meneghetti, C., Zhao, Y., Pazzaglia, F., & Creem-Regehr, S. H. (2021). Effects of 
home environment structure on navigation preference and performance: A comparison in Veneto, 
Italy and Utah, USA. Journal of Environmental Psychology, 74, 101580. 
https://doi.org/10.1016/j.jenvp.2021.101580 

Chadwick, M. J., Jolly, A. E. J., Amos, D. P., Hassabis, D., & Spiers, H. J. (2015). A Goal Direction Signal 
in the Human Entorhinal/Subicular Region. Current Biology, 25(1), 87–92. 
https://doi.org/10.1016/j.cub.2014.11.001 

Chrastil, E. R., & Warren, W. H. (2014). From cognitive maps to cognitive graphs. PloS One, 9(11), 
e112544. 

Coutrot, A., Manley, E., Goodroe, S., Gahnstrom, C., Filomena, G., Yesiltepe, D., Dalton, R. C., Wiener, 
J. M., Hölscher, C., Hornberger, M., & Spiers, H. J. (2022). Entropy of city street networks linked 
to future spatial navigation ability. Nature, 604(7904), 104–110. https://doi.org/10.1038/s41586-
022-04486-7 



12 
 

Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. 
Nature, 463(7281), 657–661. https://doi.org/10.1038/nature08704 

Doner, S., Zheng, J., McAvan, A. S., Starrett, M. J., Campbell, H., Sanders, D., & Ekstrom, A. (2022). 
Evidence for flexible navigation strategies during spatial learning involving path choices. Spatial 
Cognition & Computation, 1–30. https://doi.org/10.1080/13875868.2022.2158090 

Ericson, J. D., & Warren, W. H. (2020). Probing the invariant structure of spatial knowledge: Support for 
the cognitive graph hypothesis. Cognition, 200, 104276. 
https://doi.org/10.1016/j.cognition.2020.104276 

Etienne, A. S., & Jeffery, K. J. (2004). Path integration in mammals. Hippocampus, 14(2), 180–192. 
https://doi.org/10.1002/hipo.10173 

Fields, A. W., & Shelton, A. L. (2006). Individual skill differences and large-scale environmental learning. 
Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(3), 506–515. 
https://doi.org/10.1037/0278-7393.32.3.506 

Frick, A., MÃ¶hring, W., & Newcombe, N. S. (2014). Picturing perspectives: Development of perspective-
taking abilities in 4- to 8-year-olds. Frontiers in Psychology, 5. 
https://doi.org/10.3389/fpsyg.2014.00386 

Gallistel, C. R. (1990). The organization of learning (pp. viii, 648). The MIT Press. 

He, Q., & Brown, T. I. (2019). Environmental Barriers Disrupt Grid-like Representations in Humans during 
Navigation. Current Biology, 29(16), 2718-2722.e3. https://doi.org/10.1016/j.cub.2019.06.072 

Hegarty, M. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 
30(5), 425–447. https://doi.org/10.1016/S0160-2896(02)00116-2 

Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory & Cognition, 13(3), 
208–217. https://doi.org/10.3758/BF03197683 

Ishikawa, T., & Montello, D. (2006). Spatial knowledge acquisition from direct experience in the 
environment: Individual differences in the development of metric knowledge and the integration of 
separately learned places☆. Cognitive Psychology, 52(2), 93–129. 
https://doi.org/10.1016/j.cogpsych.2005.08.003 

Jacobs, J., Weidemann, C. T., Miller, J. F., Solway, A., Burke, J. F., Wei, X.-X., Suthana, N., Sperling, M. 
R., Sharan, A. D., Fried, I., & Kahana, M. J. (2013). Direct recordings of grid-like neuronal activity 
in human spatial navigation. Nature Neuroscience, 16(9), 1188–1190. 
https://doi.org/10.1038/nn.3466 

Kozhevnikov, M., Motes, M. A., Rasch, B., & Blajenkova, O. (2006). Perspective-taking vs. Mental rotation 
transformations and how they predict spatial navigation performance. Applied Cognitive 
Psychology, 20(3), 397–417. https://doi.org/10.1002/acp.1192 

Kuipers, B. (1982). The “Map in the Head” Metaphor. Environment and Behavior, 14(2), 202–220. 
https://doi.org/10.1177/0013916584142005 

Maidenbaum, S., Miller, J., Stein, J. M., & Jacobs, J. (2018). Grid-like hexadirectional modulation of 
human entorhinal theta oscillations. Proceedings of the National Academy of Sciences, 115(42), 
10798–10803. https://doi.org/10.1073/pnas.1805007115 

McNaughton, B. L., Barnes, C. A., Gerrard, J. L., Gothard, K., Jung, M. W., Knierim, J. J., Kudrimoti, H., 
Qin, Y., Skaggs, W. E., Suster, M., & Weaver, K. L. (1996). Deciphering the hippocampal 



13 
 

polyglot: The hippocampus as a path integration system. Journal of Experimental Biology, 199(1), 
173–185. https://doi.org/10.1242/jeb.199.1.173 

McNaughton, B. L., Barnes, C. A., & O’Keefe, J. (1983). The contributions of position, direction, and 
velocity to single unit activity in the hippocampus of freely-moving rats. Experimental Brain 
Research, 52(1). https://doi.org/10.1007/BF00237147 

McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M.-B. (2006). Path integration and 
the neural basis of the “cognitive map.” Nature Reviews Neuroscience, 7(8), Article 8. 
https://doi.org/10.1038/nrn1932 

Mehta, M. R., Barnes, C. A., & McNaughton, B. L. (1997). Experience-dependent, asymmetric expansion 
of hippocampal place fields. Proceedings of the National Academy of Sciences, 94(16), 8918–
8921. https://doi.org/10.1073/pnas.94.16.8918 

Meilinger, T. (2008). The Network of Reference Frames Theory: A Synthesis of Graphs and Cognitive 
Maps. In C. Freksa, N. S. Newcombe, P. Gärdenfors, & S. Wölfl (Eds.), Spatial Cognition VI. 
Learning, Reasoning, and Talking about Space (pp. 344–360). Springer. 
https://doi.org/10.1007/978-3-540-87601-4_25 

Miller, J. F., Lazarus, E. M., Polyn, S. M., & Kahana, M. J. (2013). Spatial clustering during memory 
search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 773–781. 
https://doi.org/10.1037/a0029684 

Moeser, S. D. (1988). Cognitive Mapping in a Complex Building. Environment and Behavior, 20(1), 21–
49. https://doi.org/10.1177/0013916588201002 

Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place Cells, Grid Cells, and the Brain’s Spatial 
Representation System. Annual Review of Neuroscience, 31(1), 69–89. 
https://doi.org/10.1146/annurev.neuro.31.061307.090723 

Muller, R., Bostock, E., Taube, J., & Kubie, J. (1994). On the directional firing properties of hippocampal 
place cells. The Journal of Neuroscience, 14(12), 7235–7251. 
https://doi.org/10.1523/JNEUROSCI.14-12-07235.1994 

Muryy, A., & Glennerster, A. (2018). Pointing Errors in Non-metric Virtual Environments. In S. Creem-
Regehr, J. Schöning, & A. Klippel (Eds.), Spatial Cognition XI (pp. 43–57). Springer International 
Publishing. https://doi.org/10.1007/978-3-319-96385-3_4 

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit 
activity in the freely-moving rat. Brain Research, 34(1), 171–175. https://doi.org/10.1016/0006-
8993(71)90358-1 

O’Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press. 
https://repository.arizona.edu/handle/10150/620894 

Peer, M., Brunec, I. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring Knowledge with Cognitive 
Maps and Cognitive Graphs. Trends in Cognitive Sciences, 25(1), 37–54. 
https://doi.org/10.1016/j.tics.2020.10.004 

Peer, M., & Epstein, R. A. (2021). The human brain uses spatial schemas to represent segmented 
environments. Current Biology, 31(21), 4677-4688.e8. https://doi.org/10.1016/j.cub.2021.08.012 

Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size 
predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6), 515–528. 
https://doi.org/10.1002/hipo.22111 



14 
 

Shine, J. P., Valdés-Herrera, J. P., Tempelmann, C., & Wolbers, T. (2019). Evidence for allocentric 
boundary and goal direction information in the human entorhinal cortex and subiculum. Nature 
Communications, 10(1), 4004. https://doi.org/10.1038/s41467-019-11802-9 

Siegel, A. W., & White, S. H. (1975). The Development of Spatial Representations of Large-Scale 
Environments. In H. W. Reese (Ed.), Advances in Child Development and Behavior (Vol. 10, pp. 
9–55). JAI. https://doi.org/10.1016/S0065-2407(08)60007-5 

Warren, W. H. (2019). Non-Euclidean navigation. Journal of Experimental Biology, 222(Suppl 1). 
https://doi.org/10.1242/jeb.187971 

Weisberg, S. M., & Newcombe, N. S. (2018). Cognitive Maps: Some People Make Them, Some People 
Struggle. Current Directions in Psychological Science, 27(4), 220–226. 
https://doi.org/10.1177/0963721417744521 

Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in 
cognitive maps: Understanding individual differences in navigation. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 40(3), 669–682. https://doi.org/10.1037/a0035261 

Zetzsche, C., Wolter, J., Galbraith, C., & Schill, K. (2009). Representation of space: Image-like or 
sensorimotor? Spatial Vision, 22(5), 409–424. https://doi.org/10.1163/156856809789476074 

  



2 
 

Supplementary Materials 

 

 
Figure S1: Spatial memory tasks. A-D) Euclidean distance estimation, shortest path selection, path 
distance estimation, and judgment of relative direction (JRD) tasks. Left – Example trial screen for each 
task; Right – Schematic depicting the choice the participant needs to make in an example trial. E-F) Map 
localization and Free recall tasks: Example trial screens. 
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Figure S2: Map localization example performance. Left – the original configuration of rooms in the 
environment. Right – example configurations rooms in the map localization task, from six example 
participants (three integrators and three non-integrators, from the three experimental environments; each 
rectangle represents one participant’s performance). Each colored dot represents a participant’s 
localization of the correspondingly colored room on a blank map of the environment. The localization of the 
nine objects task is not presented here. 
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Correlation of individual SBSOD score to task performance 

 
Learning Euclidean 

distance 
estimation 

Path distance 
estimation 

Shortest path 
selection 

Map 
localization 

JRD 

Open 
maze 

0.08 0.14 0.25 0.08 0.11 0.18 

Closed 
maze 

0.56 0.34 0.40 0.46 0.44 0.30 

Teleport 
maze 

0.21 0.10 0.33 0.52 0.37 
 

 
Correlation of individual PTTA score to task performance 

 
Learning Euclidean 

distance 
estimation 

Path distance 
estimation 

Shortest path 
selection 

Map 
localization 

JRD 

Open 
maze 

0.18 0.25 0.20 0.12 0.67 0.52 

Closed 
maze 

0.54 0.45 0.55 0.35 0.46 0.57 

Teleport 
maze 

0.18 0.49 0.33 0.51 0.38 
 

 
Table S1: Correlation of SBSOD and PTTA scores to task performance.  

 


	Results
	The structure of the environment affects the accuracy of spatial knowledge
	The structure of the environment affects the format of spatial knowledge
	The structure of the environment affects how spatial knowledge varies across individuals

	Discussion
	Methods
	Participants
	Virtual environments
	Experimental Procedure Overview
	Santa Barbara Sense of Direction (SBSOD)
	Perspective Taking Task for Adults (PTTA)
	Environmental learning task
	Euclidean distance estimation task
	Shortest path selection task
	Path distance estimation task
	Free recall task
	Map localization task
	Judgment of Relative Direction (JRD) task

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Santa Barbara Sense of Direction (SBSOD)
	Perspective Taking Task for Adults (PTTA)
	Environmental learning task
	Euclidean distance estimation task
	Shortest path selection task
	Path distance estimation task
	Free recall task
	Map localization task
	Judgment of Relative Direction (JRD) task
	Individual variability analysis

	DATA AVAILABILITY
	Acknowledgments
	Author contributions
	References


